关于贝叶斯概率(Bay概率(Bayes theory)

  • 理论

前天上课上到贝叶斯概率,复习一下,理论参见:百度百科贝叶斯公式wiki百科贝叶斯定理

理论不难,重点是区分,前验概率,后验概率和条件概率。在这里举个例子帮助理解。

  • 例子

三家工厂生产同一件产品的分布为:0.15,0.8,0.05,其中产品的故障分布为:0.02,0.01,0.03,求已知一个产品存在故障的前提下,分布在哪个工厂的概率最高?

分析:

事件A:产品为次品

事件B:产品属于哪一个车间

则有:

P(A|B1)=0.02,P(B1)=0.15

P(A|B2)=0.01,P(B2)=0.80

P(A|B3)=0.03,P(B3)=0.05

P(A)=\sum_{i=1}^{3}P(A|Bi)*P(Bi)=0.0125

P(B1|A)=\frac{P(A|B1)*P(B1)}{P(A)}

P(B2|A)=\frac{P(A|B2)*P(B2)}{P(A)}

P(B3|A)=\frac{P(A|B3)*P(B3)}{P(A)}

然后通过比较P(B1|A),P(B2|A),P(B3|A)三者大小即可判断哪个产品次品率最高。

 

 

 

发布了5 篇原创文章 · 获赞 17 · 访问量 1万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览