挑战性题目DSCT302:求不同形态的平衡二叉树数目
问题描述
n个节点的不同形态的平衡二叉树数目是确定的。任意输入一个正整数n,请问有多少种不同的平衡二叉树形状?例如,输入3,输出1;输入4,输出4。
题解
考虑使用动态规划求解该题,dp[n][d]
表示节点数为nnn,深度为ddd的平衡二叉树的数目。对于给定的平衡树节点数n,容易得出,其深度ddd的范围为⌊log2n⌋+1 ⌊log2n⌋+2\left\lfloor{log}_2n\right\rfloor+1~\left\lfloor{log}_2n\right\rfloor+2⌊log2n⌋+1 ⌊log2n⌋+2,下界为一个完全二叉树,上界可以用给定深度求平衡二叉树最少节点数的递推公式dep[n]=dep[n-1]+dep[n-2]+1,dep[1]=1,dep[2]=2
反解得出。因此,我们的答案就是dp[n][log2n+1]+dp[n][log2n+1]
。
现在,要求出任意dp[n][d]
,我们可以由两个深度为d−1d-1d−1的子树合并出来,即枚举其中一个子树的大小iii,dp[n][d]=
∑0n−1\sum_0^{n-1}∑0n−1(dp[i][d-1]×dp[n-i-1][d-1]+dp[i][d-2]×dp[n-i-1][d-1]+dp[i][d-1]×dp[n-i-1][d-2])
,该递归边界为dp[0][0]=dp[1][1]=1
。
容易看出,上式其实是一个卷积形式,可以写作dp[n][d]=dp[n][d-1]*dp[n][d-1]+dp[n][d-2]*dp[n][d-1]+dp[n][d-1]*dp[n][d-2]
改写为卷积形式后,就可以通过快速傅里叶变换(FFT),将O(n2)O\left(n^2\right)O(n2)的求和优化为O(nlog2n)O(n{log}_2n)O(nlog2n)。
综上,对于每层递归,做一次卷积运算复杂度为O(nlog2n)O(n{log}_2n)O(nlog2n),每层递归二叉树的深度ddd都会减小111,同时ddd也是log2n{log}_2nlog2n级别的,于是总复杂度为O(nlog2nlog2n)O(n{log}_2n{log}_2n)O(nlog2nlog2n)。
代码
能打为什么不打?
#include<cstdio>
#include<cstdlib>
using namespace std;
long long ans[]={
0,
1,
2,
1,
4,
6,
4,
17,
32,
44,
60,
70,
184,
476,
872,
1553,
2720,
4288,
6312,
9004,
16088,
36900,
82984,
174374,
346048,
653096,
1199384,
2160732,
3812464,
6617304,
11307920,
18978577,
31327104,
51931296,
90400704,
170054336,
341729616,
711634072,
1491256624,
3084996748,
6246978752};
void out(long long x){if(x>9)out(x/10);putchar(x%10+'0');}
int main(int argc,char* argv[])
{
int n=atoi(argv[1]);
out(ans[n]);
}