BZOJ2521[SHOI2010] 最小生成树

原题链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2521

最小生成树

Description

Secsa最近对最小生成树问题特别感兴趣。他已经知道如果要去求出一个n个点、m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法。另外,他还知道,某一个图可能有多种不同的最小生成树。例如,下面图 3中所示的都是图 2中的无向图的最小生成树:

1.jpg

当然啦,这些都不是今天需要你解决的问题。Secsa想知道对于某一条无向图中的边AB,至少需要多少代价可以保证AB边在这个无向图的最小生成树中。为了使得AB边一定在最小生成树中,你可以对这个无向图进行操作,一次单独的操作是指:先选择一条图中的边 P1P2,再把图中除了这条边以外的边,每一条的权值都减少1。如图 4所示就是一次这样的操作:

2.jpg

Input

输入文件的第一行有3个正整数n、m、Lab分别表示无向图中的点数、边数、必须要在最小生成树中出现的AB边的标号。
接下来m行依次描述标号为1,2,3…m的无向边,每行描述一条边。每个描述包含3个整数x、y、d,表示这条边连接着标号为x、y的点,且这条边的权值为d。
输入文件保证1<=x,y<=N,x不等于y,且输入数据保证这个无向图一定是一个连通图。

Output

输出文件只有一行,这行只有一个整数,即,使得标号为Lab边一定出现最小生成树中的最少操作次数。

Sample Input

4 6 1
1 2 2
1 3 2
1 4 3
2 3 2
2 4 4
3 4 5

Sample Output

1

HINT

第1个样例就是问题描述中的例子。

1<=n<=500,1<=M<=800,1<=D<10^6

题解

首先,显然的是:把其他边 1 − 1 的操作等价于把这条边 +1 + 1

要将某个边 (u,v) ( u , v ) 强制加入最小生成树中,就要把其他可以取代这条边的边的权值加到 val(u,v)+1 v a l ( u , v ) + 1

那么,我们要做的就是用 val(u,v)+1val() v a l ( u , v ) + 1 − v a l ( 其 他 ) 的代价删掉一些边,使 u,v u , v 不连通,就可以将边 (u,v) ( u , v ) 加入最小生成树里。

最小割???

代码

注意无向图的加边,没有正反向边之分。

#include<bits/stdc++.h>
using namespace std;
const int M=505;
struct sd{int to,fl;}ed[M<<2];
struct hh{int a,b,d;}data[M<<2];
int n,m,lab,id,start,end,lay[M],itr[M];
vector<int>mmp[M];
queue<int>dui;
void add(int a,int b,int d)
{
    mmp[a].push_back(id);ed[id++]=(sd){b,d};
    mmp[b].push_back(id);ed[id++]=(sd){a,d};
}
void in()
{
    scanf("%d%d%d",&n,&m,&lab);
    for(int i=1;i<=m;++i)scanf("%d%d%d",&data[i].a,&data[i].b,&data[i].d);
    start=data[lab].a,end=data[lab].b;
    for(int i=1;i<=m;++i)if(data[i].d<=data[lab].d&&i!=lab)add(data[i].a,data[i].b,data[lab].d-data[i].d+1);
}
int bfs(int s,int e)
{
    memset(lay,0,sizeof(lay));
    memset(itr,0,sizeof(itr));
    int f,to,fl,hh;
    lay[s]=1;dui.push(s);
    while(!dui.empty())
    {
        f=dui.front();dui.pop();
        for(int i=mmp[f].size()-1;i>=0;--i)
        {
            hh=mmp[f][i];to=ed[hh].to;fl=ed[hh].fl;
            if(lay[to]||!fl)continue;
            lay[to]=lay[f]+1;dui.push(to);
        }
    }
    return lay[e];
}
int dfs(int s,int e,int mn)
{
    if(!mn||s==e)return mn;
    int ans=0,to,fl,hh,tmp,siz=mmp[s].size()-1;
    for(int i=itr[s];i<=siz;++i)
    {
        hh=mmp[s][i];to=ed[hh].to;fl=ed[hh].fl;
        if(lay[to]!=lay[s]+1||!fl)continue;
        tmp=dfs(to,e,min(mn-ans,fl));
        if(!tmp)continue;
        ed[hh].fl-=tmp;ed[hh^1].fl+=tmp;
        ans+=tmp;itr[s]=i;
        if(mn==tmp)break;
    }
    return ans;
}
void ac()
{
    int ans=0;
    while(bfs(start,end))ans+=dfs(start,end,INT_MAX);//puts("GG");
    printf("%d",ans);
}
int main(){in();ac();}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShadyPi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值