背景
现如今,随着企业业务系统越来越复杂,单指标时间序列预测已不能满足大部分企业需求。在复杂的系统内,如果采用单一的指标进行时间序列预测,由于各个指标相互作用的关系,因此会因为漏掉部分指标因素导致出现预测精确度下降的情况。基于以上背景,多指标时间序列预测出现了。多指标时间序列预测可以将目标值涉及到的所有因素均考虑在内,因此提高了预测的准确性。
时间序列概念
时间序列是一组按照时间发生先后顺序进行排列的数据点序列。具有以下特点:
-
通常一组时间序列的时间间隔为一恒定值;
-
往往具有有意义的可探究的特征,如趋势性、周期性等;
-
时间序列会包含一定程度的噪音,即随机特征。

预测的基本任务
单指标时序预测任务是给定某一个指标的历史变化情况,预测其在未来一段时间内的变化。多指标时序预测任务则是给定某几个指标的历史变化情况,预测其在未来一段时间内的变化。多指标时序预测任务与单指标时序预测任务的区别在于几个指标之间不一定相互独立,而是存在某种影响。

评价指标
下图为时间序列模型常用评价指。在使用过程中,需根据实际的数据特征和指标特性进行选择。

预测方式
示例:假设一个时间序列为 [1,2,3,4,5,6,7,8,9,10,X,Y,Z],通过 [1,2,3,4,5,6,7,8,9,10] 预测 [X,Y,Z]。
-
单步预测
单步预测是用 [8,9,10] 预测 [X]。即通过过去三个时间戳的值 [

最低0.47元/天 解锁文章
9万+

被折叠的 条评论
为什么被折叠?



