复习篇15章:量子论基础

好像我所想到的答案都是别人容易想到的,就算如此,就算对别人来说是简单的答案,但我也依然还是要努力挺过那段时间,到目前为止在我面前的那些挑战,面对那些大大小小的困难,努力去找出答案的时间从脑海中掠过,或许比起我在当下每一刻所找到的解决方案,答案,结果,能够不放弃坚持下来的那些时间,才是一直不变的唯一的答案

文章目录

15.1 热辐射 普朗克能量子假设

15.1.1 热辐射

Def: 由温度决定的物体的电磁辐射

  • 物体辐射电磁波的同时,也吸收电磁波

  • 物体辐射本领越大,其吸收本领也越大

辐射吸收达到平衡时,物体的温度不再变化,此时物体的热辐射称为平衡热辐射

<1> 单色辐射出射度(单色辐出度)

Def: 一定温度 T T T下,物体单位面元在单位时间内发射的波长在 λ ∼ λ + d λ \lambda\sim\lambda+d\lambda λλ+dλ内的辐射能 d M λ dM_{\lambda} dMλ与波长间隔 d λ d\lambda dλ的比值:
M λ ( T ) = d M λ d λ M_{\lambda}(T) = \frac{dM_{\lambda}}{d\lambda} Mλ(T)=dλdMλ
辐出度:物体(温度 T T T)单位表面在单位时间内发射的辐射能为:
M ( T ) = ∫ 0 ∞ M λ ( T ) d λ M(T) = \int_{0}^\infty M_{\lambda}(T)d\lambda M(T)=0Mλ(T)dλ
说明: 温度越高,辐出度越高;另外,辐出度还与
材料性质
有关

总结为:
温 度 ⟶ 物 体 热 辐 射 ⟵ 材 料 性 质 \bf温度\longrightarrow 物体热辐射 \longleftarrow 材料性质

15.1.2 黑体辐射

  • 绝对黑体(简称黑体):能够全部吸收各种波长的辐射,并且不反射和透射物体
  • 黑体辐射的特点:
    • 温 度 → 黑 体 热 辐 射 ↚ 材 料 性 质 \bf 温度\rightarrow 黑体热辐射 \nleftarrow 材料性质
    • 与同温度其他物体的热辐射相比,黑体吸收本领最大,因此黑体热辐射本领最强
  • 黑体单色辐出度随波长变化曲线特点
    • 曲线极大值所对应的波长称为峰值波长
    • 温度越,峰值波长越
    • 任意波长的单色辐出度都随着温度的升高而增大,但在波长很小和很大时,单色辐出度都趋近于零
  • 黑体辐射实验规律[记住规律和公式就差不多了]
    • 斯特藩–玻尔兹曼定律: M B ( T ) = ∫ 0 ∞ M B λ ( T ) d λ = σ T 4 M_{B}(T) = \int_{0}^\infty M_{B\lambda}(T)d\lambda = \sigma T^4 MB(T)=0MBλ(T)dλ=σT4,其中, σ \sigma σ在计算中会给出数值,从这个定律得到辐出度与 T 4 T^4 T4成正比
    • 维恩位移定律: T λ m = 2.90 ∗ 1 0 − 6 m ⋅ K T\lambda_{m} = 2.90*10^{-6} \quad m·K Tλm=2.90106mK,可以得到峰值波长 λ m \lambda_{m} λm温度 T T T成正比
<1> 举个栗子

测得太阳光谱的峰值波长在绿光区域,为 λ m = 0.47 μ m \lambda_{m} = 0.47\mu m λm=0.47μm,求出太阳的表面温度和辐出度

明确两个公式:

  • M B ( T ) = σ T 4 ∝ T 4 M_{B}(T) =\sigma T^{4}\propto T^{4} MB(T)=σT4T4,对应于辐出度与温度的关系
  • T λ m = 2.90 ∗ 1 0 − 6 T\lambda_{m} = 2.90*10^{-6} Tλm=2.90106,对应于温度与峰值波长的关系
  • 可以看出, M B ( T ) 、 T 、 λ m M_{B}(T)、T 、 \lambda_{m} MB(T)Tλm三个物理量的中间桥梁 T [ 温 度 ] T[温度] T[],即需要先求出温度

求解过程为:
T s = 2.9 ∗ 1 0 6 λ m = 2.9 ∗ 1 0 6 0.47 ∗ 1 0 − 6 = 6166 K 辐 出 度 : M B ( T ) = σ T s 4 = 8.20 ∗ 1 0 7 ( W / m 2 ) T_{s} = \frac{2.9*10^{6}}{\lambda_{m}} = \frac{2.9*10^{6}}{0.47*10^{-6}} = 6166K \\ 辐出度:\qquad M_{B}(T) = \sigma T^{4}_{s} = 8.20*10^{7} (W/m^{2}) Ts=λm2.9106=0.471062.9106=6166KMB(T)=σTs4=8.20107(W/m2)

15.1.3 普朗克的能量子假设

普朗克提出:能量的取值是不连续的

  • 最小的能量单元: ε = h ν \varepsilon = h\nu ε=hν ε \varepsilon ε能量子
  • 谐振子辐射和吸收的能量只能为 ε \varepsilon ε的整数倍: E = n h ν , ( n = 1 , 2 , 3... ) \bf{E = nh\nu},(n=1,2,3...) E=nhν(n=1,2,3...)
  • 提出了普适常量 h h h

最早认识普朗克能量子假设的意义的为爱因斯坦,他进一步发展了能量子假设,提出了光量子假设

光量子假设: 结合能量子假设定义,光是由光子组成的粒子流,光所具有的能量也是聚集成一份份在空间传播,所具有的能量也为 ε = h ν \bf{\varepsilon = h\nu} ε=hν

光量子假设成功解释了光电效应


15.2 光电效应 爱因斯坦光子理论

  • 光电效应: 光找在金属表面上,电子从金属表面逸出的现象

  • 逸出功:电子从金属飞出时需要克服原子核对其的吸引而做功,使电子脱离金属所作功的最小值称为该金属的逸出功

    可以看出,逸出功的大小与材料性质有关

15.2.1 光电效应

  • 光的强度: 单位时间垂直通过,单位面积的光子总能量

实验规律:

  • 饱和电流 i s ∝ I i_{s} \propto I isI (入射光强度)【频率是一定的】

    实质:单位时间内从阴极发射的光电子数入射光强成正比

  • 存在截止频率 υ 0 ( 红 限 ) \upsilon_{0}(红限) υ0()截止波长 λ 0 \lambda_{0} λ0

    λ 0 = c ν 0 \bf\lambda_{0} = \frac{c}{\nu_{0}} λ0=ν0c

  • 遏止电压 U 0 U_{0} U0

    注意: 光照射不变的条件下 U ↓ ⟶ i ↓ U\downarrow\quad\longrightarrow i\downarrow Ui而当 U = 0 U=0 U=0时, i ≠ 0 i \neq 0 i=0

  • 最主要的公式:因为表面逸出的电子具有初动能,当电子从 K K K级到 A A A级加负压 U a U_{a} Ua时,电子的初动能全部消耗在克服电场力做功上,即存在能量转化的过程: 1 2 m v m 2 = e U a , 此 时 i = 0 \frac{1}{2}mv_{m}^2=eU_{a},此时i=0 21mvm2=eUa,i=0

  • 即时性: ν > ν 0 \nu>\nu_{0} ν>ν0时,无论光强多大,滞后时间都不能超过 1 0 − 9 s 10^{-9}s 109s

注意:

​ 通过公式 1 2 m v m 2 = e U a \frac{1}{2}mv_{m}^{2} = eU_{a} 21mvm2=eUa得,最大初动能与 I [ 光 照 强 度 ] I[光照强度] I[],而与 ν \nu ν有关,由此可以推出: U a ∝ ( E k = 1 2 m v m 2 ) U_{a} \propto (E_{k}=\frac{1}{2}mv_{m}^2) Ua(Ek=21mvm2),即 U a = K ( ν − ν 0 ) , U a ( 初 动 能 ) ∝ ν U_{a} = K(\nu -\nu_{0}), U_{a}(初动能)\propto\nu Ua=K(νν0)Ua()ν

由上,可以总结延伸为:

  • 初动能入射光强度 I I I无关
  • ν < ν 0 \nu < \nu_{0} ν<ν0,无论 I I I多大,照射时间再长,都不会产生光电效应
  • 只要 ν > ν 0 \nu > \nu_{0} ν>ν0,无论 I I I多大,光电子都能立即逸出

15.2.2 爱因斯坦的光子理论

  • 光是以 c c c运动的粒子流—光子流
  • 每个光子具有能量 ε = h ν \varepsilon = h\nu ε=hν,即不同 ν \nu ν的光子具有不同的能量
  • 光强 I I I取决于单位时间通过垂直于光方向上单位面积的光子数 N N N单个光子的能量. I = N ⋅ h ν I = N·h\nu I=Nhν

15.2.3 光子理论解释光电效应

h ν = A + 1 2 m v m 2 [ 爱 因 斯 坦 光 电 效 应 方 程 ] h\nu = A+\frac{1}{2}mv_{m}^{2}\quad[\bf{爱因斯坦光电效应方程}] hν=A+21mvm2[]

  1. 饱和电流 i s ∝ I i_{s}\propto I isI射光强度(频率一定)

    饱和电流光电子数 N N N有关

  2. 截止频率 ν 0 ( 红 限 ) \nu_{0}(红限) ν0()截止波长 λ 0 \lambda_{0} λ0

    h ν 0 = A → ν 0 = A h h\nu_{0} = A \rightarrow \nu_{0}=\frac{A}{h} hν0=Aν0=hA ν < ν 0 \nu < \nu_{0} ν<ν0 时,不能逸出

  3. 遏止电压 U a U_{a} Ua

    能量守恒角度: h ν = A + 1 2 m v m 2 ⟶ 1 2 m v m 2 ∝ ν ⟶ U a ∝ ν h\nu = A+\frac{1}{2}mv_{m}^{2}\longrightarrow\frac{1}{2}mv_{m}^{2}\propto\nu\longrightarrow U_{a}\propto\nu hν=A+21mvm221mvm2νUaν,其中: U a = K ( ν − ν 0 ) U_{a} = K(\nu-\nu_{0}) Ua=K(νν0)

  4. 即时性 :光电效应的发生是瞬时的

15.2.4 光的波粒二象性

  • 波动性: 光的干涉、衍射、偏振实验
  • 粒子性: 黑体辐射、光电效应等实验

光子的基本特征:

  1. 能量: ε = h ν \varepsilon = h\nu ε=hν ε = m c 2 \varepsilon = mc^{2} ε=mc2
  2. 质量: m = h ν c 2 m = \frac{h\nu}{c^2} m=c2hν
  3. 动量: p = m c = h ν c = h λ p=mc=\frac{h\nu}{c}=\frac{h}{\lambda} p=mc=chν=λh注意这里的速度是 c c c

15.3 康普顿效应

因为光子和物质相互作用,可能会发生不同的效应,总结为以下三种可能性

  1. 可见光能量较低,主要发生光电效应
  2. X射线中等能量,主要发生康普顿效应
  3. 高能光子与原子核相互作用,形成正负电子对

15.3.1 什么是康普顿效应

  • 使用: X射线,原波长为 λ 0 \lambda_{0} λ0

  • 现象:入射到石墨上,后发出的散射光线中有波长大于入射光波长的现象

    因为散射使 ν ↓ \nu\downarrow ν,即能量降低,而光速 c c c不变,则 λ ↑ = c → ν ↓ \lambda\uparrow=\frac{\overrightarrow{c}}{\nu\downarrow} λ=νc

出现的其他现象:

  1. 出现的两种波长 λ 0 、 λ 、 Δ λ = λ − λ 0 \lambda_{0}、\lambda、\Delta\lambda=\lambda-\lambda_{0} λ0λΔλ=λλ0随散射角 θ \theta θ增大而增大
  2. 同一散射角 θ \theta θ下,所有散射物质波长的变量 Δ λ \Delta\lambda Δλ都是相同的
  3. 原子量较小的物质,康普顿散射较强;而原子量较大的物质,康普顿散射较弱。

15.3.2 实验规律

  1. 散射光线中有与 λ 0 \lambda_{0} λ0相同的射线,也有波长大于 λ 0 \lambda_{0} λ0的射线;即散射的波长 λ ≥ λ 0 \lambda \ge \lambda_{0} λλ0
  2. 波长改变量 Δ λ = λ − λ 0 \Delta\lambda=\lambda-\lambda_{0} Δλ=λλ0,随散射角 θ \theta θ增加而增加
  3. 同一 θ \theta θ下,波长的改变量 Δ λ \Delta\lambda Δλ都是相同的
  4. 物质原子量大小康普顿效应强度负相关关系

总结一下:

  • 康普顿效应中散射出来的波长: λ ≥ λ 0 \bf{\lambda \ge \lambda_{0}} λλ0
  • 散射角 θ \theta θ变大,波长改变量 Δ λ \Delta\lambda Δλ变大; θ \theta θ不变, Δ λ \Delta\lambda Δλ不变;
  • 物质原子量大小 负相关于 康普顿效应强度

15.3.3 康普顿效应的光子论解释

​ X射线为一束以光速 c c c运动的光粒子流,每个光子的能量为 h ν h\nu hν,动量为 h λ \frac{h}{\lambda} λhX射线与散射物的相互作用能够看成是一个光子和散射物中一个自由电子弹性碰撞的过程,中间遵守能量守恒、动量守恒的规律。

推导时间到!

整个过程遵循能量与动量守恒,注意前提:与光子发生碰撞的原子也具有能量 m 0 c 2 m_{0}c^{2} m0c2,其中 m 0 m_{0} m0为其原质量
{ h ν 0 + m 0 c 2 = h ν + m c 2 能 量 守 恒 h ν 0 c + 0 = h ν c cos ⁡ θ + m v cos ⁡ φ 动 量 守 恒 h ν c sin ⁡ θ = m v sin ⁡ φ 方 向 守 恒 \left\{ \begin{aligned} h\nu_{0}+m_{0}c^{2} & = h\nu+mc^2 \quad \bf{能量守恒}\\ \frac{h\nu_{0}}{c}+0 & = \frac{h\nu}{c}\cos\theta+mv\cos\varphi \quad \bf{动量守恒}\\ \frac{h\nu}{c}\sin\theta & = mv\sin\varphi \quad \bf{方向守恒} \end{aligned} \right. hν0+m0c2chν0+0chνsinθ=hν+mc2=chνcosθ+mvcosφ=mvsinφ
波长改变量 Δ λ = λ − λ 0 = h m 0 c 2 sin ⁡ 2 θ 2 = λ c ( 1 − cos ⁡ θ ) \Delta\lambda = \lambda-\lambda_{0} = \frac{h}{m_{0}c}2\sin^{2}\frac{\theta}{2}=\lambda_{c}(1-\cos\theta) Δλ=λλ0=m0ch2sin22θ=λc(1cosθ)

其中, λ c \lambda_{c} λc电子的康普顿波长 λ c = h m 0 c = 0.0024 n m \lambda_{c} = \frac{h}{m_{0}c} =0.0024nm λc=m0ch=0.0024nm,其中, λ c \lambda_{c} λc θ = 9 0 o \theta = 90^{o} θ=90o方向上测得的 Δ λ \Delta\lambda Δλ


可能出现的问题:

  • θ + φ = 9 0 o ( ? ) \theta+\varphi=90^{o}(?) θ+φ=90o(?),错×,不一定恒等于 9 0 o 90^{o} 90o.

  • 因为电子的反冲速度比较大,需要按照相对论力学来处理,即 m = m 0 1 − v 2 c 2 m = \frac{m_{0}}{\sqrt{1-\frac{v^2}{c^2}}} m=1c2v2 m0

  • X射线光子原子内层电子相互作用讨论

    • ①:内层电子被紧束缚,光子相当于和整个原子发生碰撞
    • ②:因为光子质量远小于原子,碰撞时光子不损失能量,波长不变
    • 则光子与内层电子碰撞,形成波长不变的散射线;与外层电子碰撞,形成波长变大的散射线
  • Δ λ \Delta\lambda Δλ仅与 θ \theta θ相关,与散射物及 λ 0 \lambda_{0} λ0无关

    Δ λ = 2 h m 0 c sin ⁡ 2 θ 2 \bf\Delta\lambda = 2\frac{h}{m_{0}c}\sin^{2}\frac{\theta}{2} Δλ=2m0chsin22θ

  • 电子什么时候获得最大能量?
    h ν 0 + m 0 c 2 = h ν + m c 2 ↓ E k = m c 2 − m 0 c 2 = h c λ 0 − h c λ = h c ( 1 λ 0 − 1 λ 0 + Δ λ ) h\nu_{0}+m_{0}c^2 = h\nu+mc^2 \\ \downarrow \\ E_{k}=mc^2-m_{0}c^{2}=h\frac{c}{\lambda_{0}}-h\frac{c}{\lambda} = hc(\frac{1}{\lambda_{0}}-\frac{1}{\lambda_0+\Delta\lambda}) hν0+m0c2=hν+mc2Ek=mc2m0c2=hλ0chλc=hc(λ01λ0+Δλ1)
    又因为 Δ λ ∝ sin ⁡ 2 θ 2 \Delta\lambda \propto \sin^2\frac{\theta}{2} Δλsin22θ,则当 Δ λ = 2 h m 0 c \Delta\lambda = \frac{2h}{m_0c} Δλ=m0c2h最大时,此时 E k E_{k} Ek最大

  • 为什么可见光观察不到Compton效应?

    可见光波长长,比如 λ 紫 = 400 n m \lambda_{紫}=400nm λ=400nm,此时 Δ λ λ 0 = 1.2 ∗ 1 0 − 5 \frac{\Delta\lambda}{\lambda_0}=1.2*10^{-5} λ0Δλ=1.2105非常小,因此观察不到。

15.3.4 Compton效应与光电效应的区别

<1> 相同点
都为电磁波与物质相互作用的过程
<2> 不同点
  1. 入射光子能量不同
    • 可见光波长较长,能量子 h ν h\nu hν较小, E k E_{k} Ek 1 2 m v 2 \frac{1}{2}mv^2 21mv2
    • X射线波长较短,能量子 h ν h\nu hν较大, E k E_k Ek m c 2 − m 0 c 2 mc^2-m_0c^2 mc2m0c2
  2. 相互作用过程不同
    • 光电效应:电子吸收一个光子能量脱离金属束缚,逸出金属表面,满足能量守恒 h ν = e U 0 + A h\nu=eU_0+A hν=eU0+A
    • Compton效应:光子与电子碰撞,光子失去部分能量飞行方向偏转,满足能量、动量守恒

15.3.5 举些栗子

<1> 已知 λ 0 、 θ \lambda_0、\theta λ0θ,求散射波长及电子动能

题目: λ 0 = 0.1 n m \lambda_0 = 0.1nm λ0=0.1nm的光子作Compton散射实验

(1) 散射角 θ = 9 0 o \theta=90^o θ=90o的康普顿散射波长等于多少?

(2) 反冲电子获得的动能等于多少?

可能存在疑惑点:

1) 光子的质量?在计算时一般以 m 0 m_0 m0来表示,求解时记住 h m 0 c = 0.0024 n m \frac{h}{m_0c}=0.0024nm m0ch=0.0024nm,因为散射角常为 9 0 o 90^o 90o

解:

( 1 ) : (1): (1):
Δ λ = 2 ∗ h m 0 c ∗ s i n 2 ( 9 0 o 2 ) = h m 0 c = 0.0024 n m 则 λ = λ 0 + Δ λ = 0.1024 n m \Delta\lambda = 2*\frac{h}{m_0c}*sin^2(\frac{90^o}{2}) = \frac{h}{m_0c} = 0.0024nm \\ 则\quad \lambda = \lambda_0+\Delta\lambda = 0.1024nm Δλ=2m0chsin2(290o)=m0ch=0.0024nmλ=λ0+Δλ=0.1024nm

( 2 ) : (2): (2):

E k = m c 2 − m 0 c 2 = h ν 0 − h ν = h c λ 0 − h c λ λ = λ 0 + Δ λ 则 E k = h c ( 1 λ 0 − 1 λ ) = 6.63 ⋅ 1 0 − 34 ⋅ 3 ⋅ 1 0 8 ⋅ ( 1 1 0 − 10 − 1 1.024 ∗ 1 0 − 10 ) = 4.66 ⋅ 1 0 − 17 J = 2.9 ∗ 1 0 2 e V E_k =mc^2-m_0c^2= h\nu_0-h\nu =h\frac{c}{\lambda_0}-h\frac{c}{\lambda}\\ \lambda = \lambda_0+\Delta\lambda\\ 则 \quad E_k = hc(\frac{1}{\lambda_0}-\frac{1}{\lambda}) = 6.63·10^{-34}·3·10^{8}·(\frac{1}{10^{-10}}-\frac{1}{1.024*10^{-10}}) \\\quad\quad= 4.66·10^{-17}J = 2.9*10^{2}eV Ek=mc2m0c2=hν0hν=hλ0chλcλ=λ0+ΔλEk=hc(λ01λ1)=6.6310343108(101011.02410101)=4.661017J=2.9102eV

<2> 已知电子最大动能,求入射光子波长和能量

明确解题关键: Δ λ = 2 ⋅ h m 0 c ⋅ s i n 2 θ 2 \Delta\lambda = 2·\frac{h}{m_0c}·sin^2\frac{\theta}{2} Δλ=2m0chsin22θ

最大值在 θ = π \theta = \pi θ=π时取得,因此遇到最大动能时先写上: Δ λ = 2 h m 0 c \Delta\lambda = \frac{2h}{m_0c} Δλ=m0c2h

题目: 一光子与自由电子碰撞,电子可能获得的最大动能为 60 K e V 60KeV 60KeV,求入射光子的波长和能量
∵ Δ λ m a x = 2 h m 0 c s i n 2 π 2 = 2 h m 0 c 且 E k = h c λ 0 − h c λ 0 + Δ λ ∴ λ 0 = 0.00786 n m ε = h ν 0 = h c λ 0 = 158 K e V \because \quad \Delta\lambda_{max}=\frac{2h}{m_0c}sin^2{\frac{\pi}{2}}= \frac{2h}{m_0c}\\ 且 \quad E_k=h\frac{c}{\lambda_0}-h\frac{c}{\lambda_0+\Delta\lambda}\\ \therefore \quad \lambda_0 = 0.00786nm \\ \varepsilon = h\nu_0=h\frac{c}{\lambda_0}=158KeV Δλmax=m0c2hsin22π=m0c2hEk=hλ0chλ0+Δλcλ0=0.00786nmε=hν0=hλ0c=158KeV

<3> 已知电子能量 E k E_k Ek,波长改变量 Δ λ \Delta\lambda Δλ,求反冲电子的动能和动量大小

解题关键:

  • h ν 0 + m 0 c = m c + h ν h\nu_0+m_0c=mc+h\nu hν0+m0c=mc+hν
  • m = m 0 1 − ( v c ) 2 m = \frac{m_0}{\sqrt{1-(\frac{v}{c})^2}} m=1(cv)2 m0
  • p = m v = m 0 1 − ( v c ) 2 p = mv = \frac{m_0}{\sqrt{1-{(\frac{v}{c})^{2}}}} p=mv=1(cv)2 m0,其中 v v v需要通过 E k = m c 2 − m 0 c 2 = m 0 c 2 ( 1 1 − ( v c ) 2 − 1 ) E_k = mc^2-m_0c^2=m_0c^2(\frac{1}{\sqrt{1-(\frac{v}{c})^2}}-1) Ek=mc2m0c2=m0c2(1(cv)2 11)来求

题目: 已知X光光子能量为 0.6 M e V 0.6MeV 0.6MeV,经Compton散射后波长改变了20%,求反冲电子获得的动能和动量的大小

解:

( 1 ) (1) (1)
反 冲 电 子 获 得 的 动 能 为 : E k = h c ( 1 λ 0 − 1 λ 0 + Δ λ ) = h c λ 0 ( 1 − 1 1.2 ) = h ν 0 ( 1 − 1 1.2 ) = 0.1 M e V 反冲电子获得的动能为: E_k = hc(\frac{1}{\lambda_0}-\frac{1} {\lambda_0+\Delta\lambda}) \\ =h\frac{c}{\lambda_0}(1-\frac{1}{1.2}) \\ \qquad \quad \quad =h\nu_0(1-\frac{1}{1.2})=0.1MeV Ek=hc(λ01λ0+Δλ1)=hλ0c(11.21)=hν0(11.21)=0.1MeV
( 2 ) (2) (2)
反 冲 电 子 获 得 的 动 量 : p = m v = m 0 v 1 − ( v c ) 2 = 1.79 ⋅ 1 0 − 22 由 1.6 ⋅ 1 0 − 14 J = E k = m c 2 − m 0 c 2 = m 0 c 2 ( 1 1 − ( v c ) 2 − 1 ) 求 得 v 反冲电子获得的动量:p=mv=\frac{m_0v}{\sqrt{1-(\frac{v}{c})^2}}=1.79·10^{-22} \\ 由\quad1.6·10^{-14}J = E_k \\\qquad\quad\quad\quad\quad\qquad\qquad\quad=mc^2-m_0c^2\\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad=m_0c^2(\frac{1}{\sqrt{1-(\frac{v}{c})^2}}-1) \quad求得v p=mv=1(cv)2 m0v=1.7910221.61014J=Ek=mc2m0c2=m0c2(1(cv)2 11)v

15.4 氢原子光谱 玻尔的氢原子理论

光谱分类:

  1. 线光谱:原子发出,一条谱线对应一确定的波长,不同元素的原子有自己特定的线光谱
  2. 带光谱: 谱线分段密集,由分子发出
  3. 连续光谱: 固体发光形成连续光谱,包含各种波长

归纳为:

光谱分类对应物质
线光谱原子
带光谱分子
连续光谱固体

15.4.1 H原子光谱的实验规律

  1. 现象: 氢放电管中获得氢原子光谱–分立线状光谱,可见光范围内有四条谱线,一红,二蓝,一紫

  2. 总结规律: 巴尔末的经验公式 ν = 1 λ = R H ( 1 2 2 − 1 n 2 ) \nu = \frac{1}{\lambda} = R_H(\frac{1}{2^2}-\frac{1}{n^2}) ν=λ1=RH(221n21),当令 n = 3 , 4 , 5 , 6 n=3, 4, 5, 6 n=3,4,5,6时,可以求出上述四条谱线,氢光谱的里德伯常量 R H = 1.097 ⋅ 1 0 7 m − 1 R_H=1.097·10^{7}m^{-1} RH=1.097107m1

  3. 在红、紫外区的光谱线也符合上述公式

    ν = 1 λ = R H ( 1 k 2 − 1 n 2 ) ( k , n ϵ 正 整 数 ) \nu = \frac{1}{\lambda} = R_H(\frac{1}{k^2}-\frac{1}{n^2})\quad (k, n\epsilon 正整数) ν=λ1=RH(k21n21)(k,nϵ)

    通过让 k k k取定值, n > k n>k n>k得正整数,对应的谱线构成谱线系

    k = 1n = 2, 3, …赖曼系,紫外区 1 λ = R H ( 1 1 2 − 1 n 2 ) \frac{1}{\lambda}=R_H(\frac{1}{1^2}-\frac{1}{n^2}) λ1=RH(121n21)
    k = 2n = 3, 4, …巴尔末系,可见光区 1 λ = R H ( 1 2 2 − 1 n 2 ) \frac{1}{\lambda}=R_H(\frac{1}{2^2}-\frac{1}{n^2}) λ1=RH(221n21)
    k = 3n = 4, 5, …帕邢系,红外区 1 λ = R H ( 1 3 2 − 1 n 2 ) \frac{1}{\lambda}=R_H(\frac{1}{3^2}-\frac{1}{n^2}) λ1=RH(321n21)
    k = 4n = 5, 6, …布拉开系, 红外区 1 λ = R H ( 1 4 2 − 1 n 2 ) \frac{1}{\lambda}=R_H(\frac{1}{4^2}-\frac{1}{n^2}) λ1=RH(421n21)
    k = 5n = 6, 7, …普丰德系, 红外区 1 λ = R H ( 1 5 2 − 1 n 2 ) \frac{1}{\lambda}=R_H(\frac{1}{5^2}-\frac{1}{n^2}) λ1=RH(521n21)
  4. 里兹并合原理

    每一谱线的波数都可以表示为两项之差
    ν = 1 λ = R H ( 1 k 2 − 1 n 2 ) = T ( k ) − T ( n ) ( n > k ) \nu = \frac{1}{\lambda} = R_H(\frac{1}{k^2}-\frac{1}{n^2}) = T(k)-T(n)\quad (n>k) ν=λ1=RH(k21n21)=T(k)T(n)(n>k)

    T ( k ) T(k) T(k) T ( n ) T(n) T(n)称为光谱项


15.4.2 氢原子光谱的总特点

  • 光谱是线状分立
  • 原子是稳定的系统

15.4.3 玻尔的氢原子理论

  1. 定态假设: 原子只能处在一系列具有不连续能量的状态,在这些状态上外层电子绕核做圆周运动但并不向外辐射电磁波,这些状态称为原子系统的稳定状态(简称定态

    这些定态的能量为 E 1 , E 2 , . . . , E n E_1, E_2, ..., E_n E1,E2,...,En

  2. 跃迁假设: 原子的能量变化只能在两个定态之间以跃迁的方式进行,原子从一个定态(能量 E m E_m Em)跃迁到另一定态(能量 E n E_n En),发射或者吸收一个频率为 ν \nu ν的光子,这个过程的频率 ν \nu ν满足条件:
    h ν = ∣ E m − E n ∣ { m < n 低 能 态 → 高 能 态 ⟹ 吸 收 光 子 m > n 高 能 态 → 低 能 态 ⟹ 发 射 光 子 h\nu = |E_m-E_n|\quad \left\{\begin{aligned} m<n \quad 低能态\rightarrow 高能态 \Longrightarrow 吸收光子 \\ m>n \quad 高能态\rightarrow 低能态 \Longrightarrow 发射光子 \end{aligned} \right. hν=EmEn{m<nm>n

  3. 轨道量子化: 在定态下外层电子绕核运动的轨道角动量值,必须是 h 2 π \frac{h}{2\pi} 2πh的整数倍,是不连续的,有:
    L ⃗ = r ⃗ × m v ⃗ L = m v r = n h 2 π = n h ˉ \vec L = \vec r \times m\vec v \\ L=mvr=n\frac{h}{2\pi} = n\bar{h} L =r ×mv L=mvr=n2πh=nhˉ
    其中, h ˉ = h 2 π \bar{h}=\frac{h}{2\pi} hˉ=2πh约化普朗克常数 r r r轨道半径 n n n量子数

15.4.4 玻尔理论解释氢光谱规律

<1> 计算氢原子轨道半径

r n = n 2 r 1 r_n = n^2r_1 rn=n2r1

<2> 计算定态能量

E n = E 1 n 2 E_n = \frac{E_1}{n^2} En=n2E1

  • n = 1 n=1 n=1时,基态能量 E 1 = − 13.6 e V E_1=-13.6eV E1=13.6eV也是最低能量,对应最稳定状态,电子处在最内层轨道[关于最内层与电离联系在一起较容易理解];当 n > 1 n>1 n>1时,处于激发态
  • E n E_n En中的负号说明外层电子原子核束缚,处于束缚态

根据以上规律,总结二相邻能级的间隔为:
Δ E = − 13.6 [ 1 ( n + 1 ) 2 − 1 n 2 ] \Delta E = -13.6[\frac{1}{(n+1)^2}-\frac{1}{n^2}] ΔE=13.6[(n+1)21n21]

  • n ⟶ ∞ n\longrightarrow \infty n时, Δ E ⟶ 0 \Delta E \longrightarrow 0 ΔE0,能量趋于连续;
  • 电离能: 电子从基态 ⟶ \longrightarrow 自由态所需要的最小能量;则电离能为 Δ E = 0 − ( − 13.6 ) e V = 13.6 e V \Delta E = 0-(-13.6)eV=13.6eV ΔE=0(13.6)eV=13.6eV,相对应的,结合能为自由电子与原子核结合为一个基态氢原子,至少需要释放 13.6 e V 13.6eV 13.6eV的能量

15.4.5 举个栗子

题目: 由玻尔氢原子理论计算出巴尔末系第一条谱线的波长

关键: E n = 13.6 n 2 e V E_n=\frac{13.6}{n^2}eV En=n213.6eV

解:
由 巴 尔 末 系 的 k = 2 , 得 : h ν = E 3 − E 2 = − 13.6 3 2 − ( − 13.6 2 2 ) ⇒ ν = 4.5584 × 1 0 14 s − 1 ⇒ λ = c ν = 6581 A ˙ 由巴尔末系的k=2, 得:\\ \qquad h\nu = E_3-E_2 = \frac{-13.6}{3^2}-(\frac{-13.6}{2^2}) \\ \Rightarrow \nu = 4.5584 \times10^{14}s^{-1}\\ \Rightarrow\lambda = \frac{c}{\nu} = 6581\dot{A} k=2,hν=E3E2=3213.6(2213.6)ν=4.5584×1014s1λ=νc=6581A˙

15.5 微观粒子的波粒二象性 不确定性关系

15.5.1 物质波(德布罗意波、粒子波)

<1> 物质波的概念

​ 不仅光具有波粒二象性,一切实物粒子(如电子、原子、分子等)也都具有波粒二象性

​ 德布罗意提出:一个质量为 m m m,速度为 v ⃗ \vec v v 的粒子具有波动性,其与一个波长为 λ \lambda λ,频率为 ν \nu ν的波相对应。粒子性与波动性间的关系为:
{ E = m c 2 = h ν p = m v = h ν c 2 c = h ν c = h λ ⟹ { ν = E h = m c 2 h = m 0 c 2 h 1 − ( v c ) 2 λ = h p = h m v = h 1 − ( v c ) 2 m 0 v ( 当 v < < c 时 ) ⇓ { ν = ε h = m 0 c 2 h λ = h p = h m 0 v \left\{ \begin{aligned} E=&mc^2=h\nu \\ p=mv=&\frac{h\nu}{c^2}c=h\frac{\nu}{c}=\frac{h}{\lambda} \end{aligned} \right.\Longrightarrow \left\{ \begin{aligned} \nu = \frac{E}{h} = \frac{mc^2}{h}=\frac{m_0c^2}{h\sqrt{1-(\frac{v}{c})^2}} \\ \lambda = \frac{h}{p}=\frac{h}{mv} = \frac{h\sqrt{1-(\frac{v}{c})^2}}{m_0v} \end{aligned} \right. \\ \\ (当v <<c时)\Downarrow \\ \\ \left\{ \begin{aligned} \nu = \frac{\varepsilon}{h}&=\frac{m_0c^2}{h} \\ \lambda = \frac{h}{p} &= \frac{h}{m_0v} \end{aligned} \right. E=p=mv=mc2=hνc2hνc=hcν=λhν=hE=hmc2=h1(cv)2 m0c2λ=ph=mvh=m0vh1(cv)2 (v<<c)ν=hελ=ph=hm0c2=m0vh
ν ⋅ λ = m 0 c 2 h 1 − ( v c ) 2 ⋅ h 1 − ( v c ) 2 m 0 v = c 2 v \nu ·\lambda=\frac{m_0c^2}{h\sqrt{1-(\frac{v}{c})^2}}· \frac{h\sqrt{1-(\frac{v}{c})^2}}{m_0v} = \frac{c^2}{v} νλ=h1(cv)2 m0c2m0vh1(cv)2 =vc2,则关于光子与一般微观粒子的区别在于 v v v的不同:

  • 光子: 速度为 c c c, 则 ν ⋅ λ = c 2 c = c \nu·\lambda = \frac{c^2}{c}=c νλ=cc2=c
  • 一般微观粒子: v < c v<c v<c,则 λ ⋅ ν = c 2 v { > c ≠ v ( 粒 子 波 ) \lambda·\nu=\frac{c^2}{v}\left\{\begin{aligned} >c \\ \neq v\end{aligned}\right.(粒子波) λν=vc2{>c=v()
<2> 物质波概念解释玻尔量子化解释

由上,我们知道对于一般微粒都有: λ = λ p = h m v = h 1 − ( v c ) 2 m 0 v \lambda = \frac{\lambda}{p} = \frac{h}{mv} = \frac{h\sqrt{1-(\frac{v}{c})^2}}{m_0v} λ=pλ=mvh=m0vh1(cv)2

因为电子的速度 ∣ v ⃗ ∣ < < c |\vec v |<< c v <<c,所以可以将其波长视为 λ = h m v \lambda = \frac{h}{mv} λ=mvh,则此时结合 L = m v r = n h 2 π ⇒ 2 π r = n h m v = n λ L = mvr = n\frac{h}{2\pi} \Rightarrow 2\pi r=n\frac{h}{mv} = n\lambda L=mvr=n2πh2πr=nmvh=nλ,即能将驻波条件等价为 2 π r = n λ 2\pi r=n\lambda 2πr=nλ

以上条件说明驻波处于稳定状态,不向外辐射能量,则 m v r = n ⋅ h 2 π = n ⋅ h ˉ \bf mvr = n·\frac{h}{2\pi} = n·\bar{h} mvr=n2πh=nhˉ,即轨道角动量量子化条件。

以上半经典的解释不够严格,但他初步表明了:量子化条件来源于粒子的波动性

15.5.2 德布罗意波的实验验证

<1> 戴维孙-革末电子散射实验

关键思想: e U = 1 2 m 0 v 2 ⇒ v = 2 e U m 0 eU = \frac{1}{2}m_0v^2 \Rightarrow v = \sqrt{\frac{2eU}{m_0}} eU=21m0v2v=m02eU

此时, λ = h p = h 2 m 0 e U = 12.25 U ( A ˙ ) \lambda = \frac{h}{p} = \frac{h}{\sqrt{2m_0eU}} = \frac{12.25}{\sqrt{U}}(\dot A) λ=ph=2m0eU h=U 12.25(A˙),当 U U U变化时, λ \lambda λ也发生变化,实验现象表明:当 λ \lambda λ满足干涉加强条件(相消条件)时,反射电子波加强(相消)。干涉加强与减弱交替出现, I G I_G IG周期性变化,从而验证了电子波的存在

<2> 其他实验验证
  • G.P.汤姆逊电子衍射实验 – 证实了电子波的存在
  • 约恩逊电子束的双缝干涉 – 证实了电子波的存在
  • 因此,德布罗意波的实验验证都体现在电子波的存在

这些实验,都证明了一切实物粒子都具有波动性

<3> 举个栗子

题目: 计算经过电势差 U 1 = 150 V U_1 = 150V U1=150V U 2 = 1 0 4 V U_2 = 10^4V U2=104V加速的电子的德布罗意波波长(在 U ≤ 10000 V U\leq10000V U10000V时,可以不考虑相对论效应 )

解:
λ 1 = h m 0 v = h 2 m 0 e U = 1.225 U n m 得 λ 1 = 0.1 n m , λ 2 = 0.0123 n m \lambda_1 = \frac{h}{m_0v} = \frac{h}{\sqrt{2m_0eU}} = \frac{1.225}{\sqrt{U}}nm \\ \bf得 \qquad \lambda_1 = 0.1nm, \lambda_2 = 0.0123nm λ1=m0vh=2m0eU h=U 1.225nmλ1=0.1nm,λ2=0.0123nm
求解这个知识点的习题,需要记住电子的波长计算 λ = h 2 m 0 e U = 12.25 U \lambda = \frac{h}{\sqrt{2m_0eU}}=\frac{12.25}{\sqrt{U}} λ=2m0eU h=U 12.25

15.5.3 物质波的统计解释

量子理论中,粒子具有波动性

但是这里的粒子波动性与经典理论中提到的波动性有本质的区别

<1> 光的双缝干涉

{ 亮 纹 处 光 波 干 涉 加 强 I 大 , A 2 大 暗 纹 处 光 波 干 涉 减 弱 I 小 , A 2 小 \left\{ \begin{aligned} \bf亮纹处 \quad 光波干涉加强 \quad I大,A^2大 \\ \bf暗纹处 \quad 光波干涉减弱 \quad I小,A^2小 \end{aligned} \right. {IA2IA2

<2> 电子波的双缝干涉

{ 照 相 底 板 亮 纹 处 该 处 电 子 出 现 的 几 率 大 照 相 底 板 暗 纹 处 该 处 电 子 出 现 的 几 率 小 \left\{ \begin{aligned} \bf照相底板亮纹处 \quad 该处电子出现的几率大 \\ \bf照相底板暗纹处 \quad 该处电子出现的几率小 \end{aligned} \right. {

<3> 统计解释
  • 电子打在屏上的位置是随机的,但大量的电子在空间分布的几率有确定的统计规律(稳定的衍射图像
  • 因此,德布罗意波是大量运动粒子在空间分布几率的统计描述

所以,德布罗意波又可以称为是粒子波、物质波、几率波

15.5.4 不确定关系

解释: 因为粒子具有波粒二象性,它的一些物理量不可能同时具有确定的物理值,所以存在着不确定关系,不确定体现在:【本节考点】

  1. 位置和动量不可能同时确定

    设粒子在某时刻位置的不确定量为: Δ x \Delta x Δx,动量的不确定量为: Δ p x \Delta p_x Δpx,有 Δ x ⋅ Δ p ≥ h ˉ 2 \bf\Delta x·\Delta p \ge \frac{\bar{h}}{2} ΔxΔp2hˉ

  2. 能量和时间不可能同时确定

    设粒子在某时刻能量的不确定量为: Δ E \Delta E ΔE,时间的不确定量为: Δ t \Delta t Δt,则 Δ E ⋅ Δ t ≥ h ˉ 2 \bf\Delta E·\Delta t \ge \frac{\bar{h}}{2} ΔEΔt2hˉ

回忆一下: h ˉ = h 2 π \bar{h} = \frac{h}{2\pi} hˉ=2πh

这节知识点的题型核心在于判断某类问题是否能用经典力学解决,不确定性判断的是波动性对于经典力学中的粒子性影响的大小,总结为下列题型:

<1> 已知位置不确定量 Δ x \Delta x Δx,求速度不确定量

关键:

  1. 一般求速度不确定量,是为了证明原子中的电子能否看成是经典力学中的粒子,当电子的速度不确定量 Δ v \Delta v Δv 与其速度大小( 约 为 1 0 6 m / s \bf 约为10^6m/s 106m/s)数量级相近时( 1 0 5 ∼ 1 0 7 10^5\sim10^7 105107),说明该电子在任意时刻都没有完全确定的位置和速度,也没有确定的轨迹,此时不能将其视为经典粒子
  2. Δ x ⋅ Δ p ≥ h ˉ 2 \bf\Delta x·\Delta p \ge \frac{\bar{h}}{2} ΔxΔp2hˉ

题目: 原子的线度约为 1 0 − 10 m 10^{-10}m 1010m,求原子中电子速度的不确定量,讨论原子中的电子能否看成经典力学中的粒子

解:
Δ v x = Δ p x m ≥ h ˉ 2 m Δ x = 6.63 × 1 0 − 34 4 × 3.14 × 9.1 × 1 0 − 31 × 1 0 − 10 = 5.8 × 1 0 5 ( m / s ) 因 为 结 果 接 近 1 0 6 , 则 原 子 中 的 电 子 不 能 看 作 为 经 典 力 学 中 的 粒 子 \Delta v_x = \frac{\Delta p_x}{m} \ge \frac{\bar{h}}{2m\Delta x} = \frac{6.63 \times 10^{-34}}{4 \times3.14\times9.1\times10^{-31}\times10^{-10}}=5.8\times10^5(m/s) \\ \bf因为结果接近10^6,则原子中的电子不能看作为经典力学中的粒子 Δvx=mΔpx2mΔxhˉ=4×3.14×9.1×1031×10106.63×1034=5.8×105(m/s)106,

<2> 已知不确定量 Δ x \Delta x Δx,加速电压 U U U,判断是否可以使用经典力学

关键:
① e U 0 = 1 2 m 0 v 0 2 ② Δ v x ≥ h ˉ 2 m Δ x \bf①\quad eU_0 = \frac{1}{2}m_0v^2_0 \\ \bf② \quad \Delta v_x \ge\frac{\bar{h}}{2m\Delta{x}} eU0=21m0v02Δvx2mΔxhˉ
题目: 加速电压为 9 × 1 0 3 V 9\times10^3V 9×103V,电子束直径为 0.1 × 1 0 − 3 m 0.1\times10^{-3}m 0.1×103m,求电子横向速度的不确定量,讨论是否可以用经典力学解决

解:
Δ v x ≥ h ˉ 2 m Δ x = 0.58 ( m / s ) < < ( v = 6 × 1 0 7 m / s ) 因 为 波 动 性 不 起 实 际 作 用 , 可 以 使 用 经 典 力 学 解 决 \Delta v_x \ge \frac{\bar{h}}{2m\Delta x} = 0.58(m/s) <<(v=6\times10^7m/s) \\ \bf因为波动性不起实际作用,可以使用经典力学解决 Δvx2mΔxhˉ=0.58(m/s)<<(v=6×107m/s)使

<3> 已知波长 λ \lambda λ及其不确定度 Δ λ \Delta \lambda Δλ,求位置坐标 Δ x \Delta x Δx的不确定量大小

关键: p = h λ p = \frac{h}{\lambda} p=λh可得动量的不确定量大小为: Δ p = Δ λ λ 2 h \Delta p = \frac{\Delta \lambda}{\lambda ^2}h Δp=λ2Δλh

题目: 波长 λ = 500 n m \lambda = 500nm λ=500nm的光波沿 x x x轴正向传播,知 Δ λ λ = 1 0 − 7 \frac{\Delta \lambda}{\lambda} = 10^{-7} λΔλ=107,求同时测定光子位置坐标的不确定量

解:
Δ x ≥ h 2 Δ p x = 1 4 π λ 2 Δ λ = 1 4 × 3.14 500 × 1 0 − 9 1 0 − 7 = 0.40 m \Delta x \ge \frac{h}{2\Delta p_x} = \frac{1}{4\pi}\frac{\lambda^2}{\Delta\lambda} = \frac{1}{4\times3.14}\frac{500\times10^{-9}}{10^{-7}} = 0.40m Δx2Δpxh=4π1Δλλ2=4×3.141107500×109=0.40m

15.5.5 经典理论与近代理论的选择

<1> 理论层面

①: c c c为判据
{ 当 v < < c 用 经 典 理 论 当 v ∼ c 用 近 代 理 论 \left\{ \begin{aligned} &当v << c & \quad 用\bf{经典理论} \\ &当v\sim c &\quad 用\bf{近代理论} \end{aligned} \right. {v<<cvc
②: h h h为判据
Δ x ⋅ Δ p x ≥ h ˉ 2 { 位 置 和 动 量 能 同 时 准 确 测 定 使 用 经 典 理 论 位 置 和 动 量 不 能 同 时 准 确 测 定 使 用 量 子 论 \Delta x·\Delta p_x \ge \frac{\bar{h}}{2} \quad \left\{ \begin{aligned} &位置和动量\bf{能}同时准确测定 &\quad 使用\bf{经典理论} \\ &位置和动量\bf{不能}同时准确测定 &\quad 使用\bf{量子论} \end{aligned} \right. ΔxΔpx2hˉ{使使

<2> 实际问题
  1. 光电效应: v < < c v << c v<<c时, E k = 1 2 m v 2 E_k = \frac{1}{2}mv^2 Ek=21mv2(用经典理论)
  2. Compton效应: 反冲电子 v ∼ c v\sim c vc E k = m c 2 − m 0 c 2 E_k = mc^2 -m_0c^2 Ek=mc2m0c2(用相对论)
  3. 电子被加速[加速电压类]: E k = 1 2 m v 2 E_k = \frac{1}{2}mv^2 Ek=21mv2(用经典理论)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值