[论文精读]A novel 5D brain parcellation approach based on spatio-temporal encoding of resting fMRI data

论文全名:A novel 5D brain parcellation approach based on spatio-temporal encoding of resting fMRI data from deep residual learning

论文网址:A novel 5D brain parcellation approach based on spatio-temporal encoding of resting fMRI data from deep residual learning - ScienceDirect

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用!

目录

1. 省流版

1.1. 心得

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

2.1.1. Objective

2.1.2. Methods

2.1.3. Conclusion

2.1.4. Significance

2.2. Introduction

2.3. Related work

2.4. Theoretical background

2.5. Method

2.5.1. Label generation

2.5.2. Model configuration

2.5.3. Model input templates

2.5.4. fMRI data: acquisition and preprocessing

2.6. Results

2.6.1. Spatial variability

2.6.2. Age effects

2.6.3. Temporal variability

2.7. Discussion

2.8. Conclusion

3. Reference List


1. 省流版

1.1. 心得

(1)爽了,又是这种维度比我还高的论文,1D鼠鼠很好奇惹

(2)2.1.1.开篇就来很多人忽略大脑动态性?有吗?没有吧?功能连接矩阵不都是time signal里面算出来的吗?会不会多1维强加了运算时间啊hhh。当然,猜测罢了,看完论文再说

(3)模型参数能不能直接画在模型框架图上啊!!!看解释真的很烦或者你做个表也行啊!平常人的语文功底本来就没有那么好!!

1.2. 论文总结图

        这不是我的方向,我不总结,也总结不了啥。

2. 论文逐段精读

2.1. Abstract

2.1.1. Objective

        Most researches ignore the dynamicity of brain parcellation, this may cause a misleading results.

2.1.2. Methods

        Thus, they put forward a spatio-temporal-network (5D) brain parcellation scheme through predicting the probability that each voxel in the brain belongs to a certain network by deep residual network. (⭐是的没错注意一下这不是我常写的内容,我以前老记录分类疾病的但这个不是。这是在自制altas我觉得。哈哈哈哈。希望我的老师不要打死我,摸鱼摸到别的地儿去了。我只是真的很好奇这个5D哪里来的)

2.1.3. Conclusion

        Their network is independent of individuals and variable of time

2.1.4. Significance

        They have... new finding...

2.2. Introduction

        ①Brain is consist of copious subparts.

        ②Computational neuroimaging includes visual neuroscience, computer science and psychology, which is a interdisciplinary field

        ③Altas based methods still have drawbacks, such as relying on given template, do not consider the natural variance of the brain and being expensive in spatial registration

        ④Existing parcellation methods fail to simulate complete 4D natures of brain. Ergo, the authors proposed a new approach with deep residual network.

        ⑤⭐作者认为的五维是每个4D脑网络(被试吗?)叠起来?这就五维啊我以为啥呢

copious  adj.大量的;丰富的;充裕的

cytoarchitectonic  ~cytoarchitectural  adj.细胞结构(构筑)的

2.3. Related work

        ①Predefined templates and mathematical similarity metrics both are effective brain parcellation methods.

        ②They list some other works.

agglomerative  adj.凝聚(结)的;附聚的;烧结的;胶凝的

precuneus  n.楔前叶;前楔叶;楔前页;内侧顶叶

2.4. Theoretical background

        ①They depoy ICA as prior components, and then train residual network in a supervised way

        ②They define fMRI image X=AS, where A is consist of time points * components and S spatial mapping matrix with component number * voxel size. Hence, the shape of X is time points* voxel size

 

2.5. Method

        ①Through encoding patio-temporal dynamics, their model is able to predict the brain parcellation by predicting every single voxel

        ②The input is time series. They generate deep residual network in a supervised method:

2.5.1. Label generation

        ①They obtain k time courses and spatial maps, then calculates their outer product:

N_i=TC_i\otimes SM_i

where TC_i denotes time coutse, SM_i denotes spatial map and N_i\in\mathbb{R}^{t\times voxel\, size} 

        ②Probabilistic maps are produced by:

PM_i=|N_i|\quad/\quad\sum_{i=1}^k|N_i|

which change all the elements to \left [ 0,1 \right ]

        ③They they introduce a same shape predefined mask to transfer probabilistic networks to 4D tensor(我也不太知道咋变的

2.5.2. Model configuration

        ①Model framework:

        ②The output channel of Conv 3D in (a) is 64, kernel size is 3, following a Sigmoid function;

the output channels of 3 res-encoding blocks are the same, 32;

the padding of the last Vonv is 1;

every Conv+batch norm layer adopts Sigmoid.

        ③Each encoding block follows a 3D max pooling with stride=1 and kernel size=3, the output channels are 16 and 8. Output channels of decoding layers are 16, 32 and 64.

        ④The final transposed 3D Conv layer adopts output channle=1 and kernel size=3.

        ⑤Mean squared error is the loss function:

L(h,(x,y))=\frac1n\times \sum_{i=1}^n\left ( h\left ( x_i \right )-y_i \right )^{2}

where h represents hypothesis

2.5.3. Model input templates

        ①Datasets: genomics superstructure project (GSP) and human connectome project (HCP)

        ②Template: independent components (ICs)-> ICA, then identify 53 functionally relevant resting-state networks (RSNs) of each subject. Every RSN is at the size of 53*63*52 and is divided by subcortical (SC), auditory (AU), sensory motor (SM), visual (VI), cognitive control (CC), default mode (DM), and cerebellar (CB) domains.

2.5.4. fMRI data: acquisition and preprocessing

        ①They test their model on data of UK Biobank study while 6 subjects for evaluating variance and 40 for age variance

        ②Method of scanning: "Participants were scanned once by a 3-Tesla (3 T) Siemens Skyra scanner with a 32-channel receive head coil, acquired all in one site. A gradient-echo echo planar imaging (GE-EPI) paradigm was used to collect/obtain resting-state fMRI scans. The EPI-based acquisition parameters include multiband acceleration factor of 8 (i.e., eight slices were acquired simultaneously), no iPAT, fat saturation, flip angle (FA)= 52°, spatial resolution = 2.4 × 2.4 × 2.4 mm, repeat time (TR)= 0.735 s, echo time (TE)= 39 ms, and 490 volumes. Subjects were instructed to stare at a crosshair passively and remain relaxed, not thinking about anything, during the six minutes and ten second resting-state scanning period."

        ③Intra-modal motion correction tool MCFLIRT is used for minimizing the distortions caused by head motion.

        ④Adopting grand-mean intensity normalization to increase comparability of subjects

        ⑤Deploying high-pass temporal filter (Gaussian-weighted least squares straight line fitting, with σ = 50.0 s) to remove residual temporal drift

        ⑥Utilizing FSL’s Topup tool to correct geometric distortions of EPI scans

2.6. Results

        ①Optimizer: Adam

        ②Learning rate: 0.00001

        ③Step size of optimizing the loss function: 5

        ④Epochs of training phase: 200

        ⑤Adopting early stopping to avoid overfitting and to improve the generalization

        ⑥Training, validation and test datasets are 70%, 10% and 20% respectively without overlappig

        ⑦Mean squared error in training set and validation set and averaged MSE loss in 53 models:

        ⑧The ability of capturing dynamics of their model presented in sensory-motor network:

the picture illustrate the original differences between 6 subjects in random timepoint

        ⑨They calculate the average value at time points and apply z-scores to depict the outputs of all 53 networks of a random subject, which better represents brain regions:

2.6.1. Spatial variability

        ①They use z-scoring, summarize differences between timepoints and capture the variances of voxels.

        ②The spatial variability for the sensory motor, default mode, auditory, subcortical, cerebellar and visual networks:

They concluded from this picture that the absolute changes in the sensory motor network highlight the sensory motor bands and the default mode network shows very high variability in the posterior cingulate gyrus, but not in the front part of the network (medial frontal)

2.6.2. Age effects

        ①They choose 20 subjects with age is less than 40 and 20 subjects with age is more than 60

        ②K-means algorithm is used for analysis, and they find magnitudes of cluster of oung subjects are higher than the elders

        ③How age influence the young and old person:

2.6.3. Temporal variability

        ①They encode different time points to research functional dynamicity in brain network

        ②"oscillations of magnitude (blue), mean (green) and standard deviation (red) of active region in a visual network for a given subject over 490 time points":

        ③Correlation heatmaps of 53 networks at all time points:

        ④Calculating the sliding window cross-correlation between all networks within 50 time points, and obtaining 12 heatmaps that vary over time:

2.7. Discussion

        Their proposed model can capture the differences between subjects, spatial variability within the network, and temporal coupling between different networks

2.8. Conclusion

        The 5D brain parcellation method proposed by the authors can capture the spatiotemporal dynamics of the brain and provide output that is sensitive to individual changes

3. Reference List

Kazemivash B. & Calhoun D. V. (2022) 'A novel 5D brain parcellation approach based on spatio-temporal encoding of resting fMRI data from deep residual learning', Journal of Neuroscience Methods, 369. doi: Redirecting

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值