仅提供ABIDE数据集复现步骤,很简单。代码已经很新了
目录
1. 论文资料
(2)论文代码:GitHub - Wayfear/FBNETGEN
(3)论文笔记:[论文精读]FBNETGEN: Task-aware GNN-based fMRI Analysis via Functional Brain Network Generation-CSDN博客
2. 代码复现步骤及可能存在的问题
2.1. 环境配置
(1)环境配置应该是属于很基础的了,应该没什么大问题,没有什么特别的包
(2)如果出现以下问题:
Traceback (most recent call last):
File "F:\FBNETGEN-main\main.py", line 3, in <module>
import yaml
ModuleNotFoundError: No module named 'yaml'
这是因为代码要读取.yaml文件里的配置数据,安装yaml就好了:
pip install PyYAML
或
conda install -c anaconda pyyaml
2.2. 代码运行
(1)如果已经运行过他们家的代码有过他们的abide.py就直接拖到:
/YourPathToDataset/ABIDE_pcp/abide.npy
⭐我这里会报错:
但是实际上我有这个文件:
网上认为是格式不对,需要将上面一行改为:
YourPathToDataset/ABIDE_pcp/abide.npy
# 或
./YourPathToDataset/ABIDE_pcp/abide.npy
这段代码在setting/abide_fbnetgen.yaml中更改
(2)运行
①可以用README的方法:
python main.py --config_filename setting/abide_fbnetgen.yaml
②如果要在main.py直接run的话去main.py里面把
parser.add_argument('--config_filename', default='setting/abide_fbnetgen.yaml', type=str,
help='Configuration filename for training the model.')
parser.add_argument('--repeat_time', default=5, type=int)
改掉就好了(这里我已经改了default了因为我不用其他俩数据集)
③成功运行后,显示:
他们abide也做的性别分类吗?精度最高是0.76,但是平均也就0.7的样子
④和文中一样,运行500个epoch,然后run5轮停止。最后在代码根目录生成result: