从数学的角度来理解傅里叶变换,离散傅里叶变换,傅里叶矩阵以及在matlab里的实现(避开电信号,频率,正弦波等)

本文从数学角度探讨傅里叶变换,包括一维连续和离散傅里叶变换,解析了傅里叶矩阵,并在MATLAB中的实现。文章阐述了傅里叶变换作为从时域到频域转换的核心,以及正交函数系在变换中的作用。
摘要由CSDN通过智能技术生成


傅里叶变换

傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。

一维连续傅里叶变换

  1. 傅里叶变换
    F ( ω ) = F [ f ( t ) ] = ∫ − ∞ + ∞ f ( t ) e − i ω t d t (1) F(\omega)=\mathcal{F}[f(t)]=\int_{-\infty}^{+\infty}f(t)e^{-i\omega t}dt \quad\tag{1} F(ω)=F[f(t)]=+f(t)eiωtdt(1)
  2. 傅里叶逆变换
    f ( t ) = F − 1 [ F ( ω ) ] = 1 2 π ∫ − ∞ + ∞ F ( ω ) e i ω t d ω (2) f(t)=\mathcal{F}^{-1}[F(\omega)]=\dfrac{1}{2\pi} \int_{-\infty}^{+\infty}F(\omega) e^{i \omega t} d\omega \quad\tag{2} f(t)=F1[F(ω)]=2π1+F(ω)eiωtdω(2)
  • 其中由欧拉公式 e x = cos ⁡ x + i sin ⁡ x e^x=\cos x +i \sin x ex=cosx+isinx e − i ω t = cos ⁡ ω t − i sin ⁡ ω t e^{-i\omega t}=\cos \omega t -i \sin \omega t eiωt=cosωtisinωt .

这样,把 e − i ω t = cos ⁡ ω t − i sin ⁡ ω t e^{-i\omega t}=\cos \omega t -i \sin \omega t eiωt=cosωtisinωt 代入傅里叶变换右端,直观地看,该公式实际上就是把左边关于 ω \omega ω的函数 F ( ω ) F(\omega) F(ω)用右边(无穷项)三角函数的线性组合来表示。(积分本质是求和)。

可以注意到的一点是,右端项的函数 f f f的自变量是 t t t,左端项函数 F F F的自变量是 ω \omega ω,实际上这两个字母在通信领域有自己的含义: t t t 代表时间, ω \omega ω 代表 角 频 率 角频率 ,所以说傅里叶变换的核心是从时域到频域的变换,而这种变换是通过一组特殊的正交基三角函数正交基)来实现的。

  • 为什么要有这样的变换?

  • 三角函数正交基(也称为三角函数正交系)
    { 1 , cos ⁡ x , sin ⁡ x , cos ⁡ 2 x , sin ⁡ 2 x , … cos ⁡ n x , sin ⁡ n x } \{1,\cos x,\sin x,\cos 2x,\sin 2x,\dots \cos nx,\sin nx\} { 1,cosx,sinx,cos2x,sin2x,cosnx,sinnx}
    三角函数系中,任何两个不相同的函数的乘积在 [ − π , π ] [-\pi,\pi] [π,π]上的积分都是零,即:
    ∫ − π π cos ⁡ n x d x = ∫ − π π sin ⁡ n x d x = 0 , ∫ − π π cos ⁡ m x cos ⁡ n x d x = 0 ( m ≠ n ) ∫ − π π sin ⁡ m x sin ⁡ n x d x = 0 ( m ≠ n ) ∫ − π π cos ⁡ m x sin ⁡ n x d x = 0 \int_{-\pi}^{\pi}\cos nx dx=\int_{-\pi}^{\pi}\sin nx dx=0,\\ \int_{-\pi}^{\pi}\cos mx\cos nx dx=0\quad (m \neq n)\\ \int_{-\pi}^{\pi}\sin mx\sin nx dx=0\quad (m \neq n)\\ \int_{-\pi}^{\pi}\cos mx\sin nx dx=0\quad ππcosnxdx=ππsinnxdx=0,ππcosmxcosnxdx=0(m=n)ππsinmxsinnxdx=0(m=n)ππcosmxsinnxdx=0
    而任何一个函数的平方在 [ − π , π ] [-\pi,\pi] [π,π]上的积分都不等于零,即:
    ∫ − π π cos ⁡ 2 n x d x = ∫ − π π sin ⁡ 2 n x d x = π , ∫ − π π 1 2 d x = 2 π . \int_{-\pi}^{\pi}\cos^2 nx dx=\int_{-\pi}^{\pi}\sin^2 nx dx=\pi,\\ \int_{-\pi}^{\pi}1^2 dx=2\pi.

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值