大模型训练如何节省显存 - DeepSpeed ZeRO

参考

https://www.deepspeed.ai/tutorials/zero/#zero-overview

https://mmengine.readthedocs.io/zh-cn/latest/common_usage/large_model_training.html

介绍

训练大模型需要巨大的资源,单卡显存已经越来越难以满足存放整个模型,因此诞生了大模型训练技术,典型的如 DeepSpeed ZeRO 和 FairScale 的完全分片数据并行(Fully Sharded Data Parallel, FSDP)技术,其允许在数据并行进程之间分片模型的参数、梯度和优化器状态,并同时仍然保持数据并行的简单性。

DeepSpeed的Zero Redundancy Optimizer(ZeRO)通过在多个GPU之间分割模型的权重、梯度和优化器状态,显著减少了每个GPU所需的内存量。

这使得训练非常大的模型成为可能,而这些模型在没有ZeRO的情况下可能会因为内存限制而无法训练。

例子:训练一个1.5B参数的GPT-2模型

假设我们有一个具有1.5亿(1.5B)参数的GPT-2模型,我们想要在一个由8个NVIDIA Tesla V100-SXM3 GPU组成的集群上训练它。每个GPU有32GB的RAM。

没有ZeRO的情况:

  • 我们尝试在每个GPU上使用默认的数据并行设置来训练模型。
  • 由于模型的参数和优化器状态(例如Adam优化器的一阶和二阶矩估计)需要存储在每个GPU上,这会占用大量的内存。
  • 结果是,每个GPU的内存需求超过了其可
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值