参考
https://www.deepspeed.ai/tutorials/zero/#zero-overview
https://mmengine.readthedocs.io/zh-cn/latest/common_usage/large_model_training.html
介绍
训练大模型需要巨大的资源,单卡显存已经越来越难以满足存放整个模型,因此诞生了大模型训练技术,典型的如 DeepSpeed ZeRO 和 FairScale 的完全分片数据并行(Fully Sharded Data Parallel, FSDP)技术,其允许在数据并行进程之间分片模型的参数、梯度和优化器状态,并同时仍然保持数据并行的简单性。
DeepSpeed的Zero Redundancy Optimizer(ZeRO)通过在多个GPU之间分割模型的权重、梯度和优化器状态,显著减少了每个GPU所需的内存量。
这使得训练非常大的模型成为可能,而这些模型在没有ZeRO的情况下可能会因为内存限制而无法训练。
例子:训练一个1.5B参数的GPT-2模型
假设我们有一个具有1.5亿(1.5B)参数的GPT-2模型,我们想要在一个由8个NVIDIA Tesla V100-SXM3 GPU组成的集群上训练它。每个GPU有32GB的RAM。
没有ZeRO的情况:
- 我们尝试在每个GPU上使用默认的数据并行设置来训练模型。
- 由于模型的参数和优化器状态(例如Adam优化器的一阶和二阶矩估计)需要存储在每个GPU上,这会占用大量的内存。
- 结果是,每个GPU的内存需求超过了其可