👀日报&周刊合集 | 🎡生产力工具与行业应用大全 | 🧡 点赞关注评论拜托啦!
1. 一位互联网老兵的碎碎念:年轻人!这么倒腾AI会把自己搞死的!
这轮大模型浪潮,吸引了众多年轻人投身其中。但实话实说,踩坑的人也太多了,而且是重复踩过去十年的坑。
作为上一轮互联网和AI浪潮的亲历者,作者根据经验总结了当下典型的几种「AI作死模式」,并给出了自己的思考和建议。
❌ 大模型做不了解决方案
-
上一轮AI创企没找到基于产品构建现金流的路子,所以最终归宿都是「做解决方案」。但是大模型的到来,使得这条路更难走了,因为成本变得更高了。
-
在小模型或者互联网的情况下,这路不怎么赚钱但大致还能走;在大模型的时代,这就是条死路。
❌ 单点工具没有意义,SaaS死在这儿了
-
SaaS 代表了AI落地的典型形式——单点的功能型工具,例如把模型进行简单包装,弄成 XX 写作、XX 助理。
-
已知 SaaS 在国内玩不转 (因为付费土壤),那么做单点AI工具必然重蹈 SaaS 覆辙,甚至更惨 (因为可能会被通用大模型碾压)。
-
单点工具一定要做的话,需要遵循的逻辑是:快点做,快点赚点钱,并且不要在国内。
❌ 整体性产品,不能从「隐性成本高」的地儿开始
-
单点工具不好做,ERP 整体工具也有坑。而且,最新大热的 Agent 正在向这个坑靠近‼
-
整体性工具重构了生产关系,也就是重构了资源流转 & 利益分配方式,那就需要强势推行来冲破组织内既有的资源流转体系。但这很难。
-
第一,很难构建现金流;第二,即使构建了估计也不可持续。
✔从混沌中摘取果实,要看到真正创新之处
-
做大模型或者大模型应用,要关注底层逻辑,然后结合信仰做出判断。也就是在一片混沌中形成一个自洽的套路,然后从未来捞一把。
-
思维框架1:角色中心式计算视角。这轮AI的核心特征是,能够理解概念,能够自主形成判断。基于这个特征构建出的工具,才是蓝海里的工具。判断依据是完成现有工具都干不了的任务。
-
思维框架2:图灵测试 2.0。一定不要互联网思维,不要单点极致口碑快。这些和AI思维是冲突的。
-
思维框架3:智能原生应用,即万物皆数、实时反馈、中心决策。能够承接角色中心式计算和通过图灵测试2.0的一定是智能原生应用。
-
思维框架4:落地的时候要搞定从1到10。
2. 万字复盘AI作品《Devices》:解析AI创作中的变与不变
Devices 是AI参与制作完成的视频作品,用「多重宇宙风格」的靓丽色彩和高频切换,展示了众多科技产品。
漂亮的画面、炫酷的切换,使得这部作品在AI社区中快速传播。作者撰文,详细且完整地分享了这个视频的灵感来源、制作流程,以及由此衍生的思考。
以下是根据作者原文整理的核心观点与思考:
-
AI 与传统工作流不是替代关系,而是合作关系。换言之,对于使用工具的人而言,AI 提供了一种新的创作思路。
-
传统视频工作流 VS AI工作流:传统工作流是在可控性中寻找创新的随机性,而AI工作流更多是在随机性中寻找可控性。所以,AI创作的核心就是平衡可控性与不可控性。
-
转绘是目前行业内最稳定的AI工作流,常被用来创作原本就存在的东西,但这容易让观众进行比较。所以,为了避免这种不利情况,AI工作流更应用来制作「只有AI才能生成」的内容。
-
AI可以短时间内、以极低成本生成大量的图像,只是经不起仔细观赏。作者视频用到的「多重宇宙风格」,把AI这种「走量」的优势发挥到了极致**,在每一帧时间戳制作出了完全不同的画面。
- 重构流程,才能用好AI。直接舍弃原有的工作流,在新AI时代中的不同的好的产品中吸取灵感,去创作出新的AI原生内容,才是应该去思考和尝试的。
一句话总结工作流:使用Blender制作白模动画,导出深度图、线框图帧序列,使用ComfyUI进行风格迥异的渲染。
作者在文中,非常详细地解释了各个步骤、软件/应用、操作技巧,简明且活泼,是非常好的新手实践教程!!
原文链接 → https://f7rdq2pzot.feishu.cn/docx/HjZXduuNgolptzxiAhDcgeJdnYg
3. 全球咨询巨头 Accenture (埃森哲) 最新报告:GenAI 时代的企业成功法则
埃森哲前段时间发布了「Work, workforce, workers: Reinvented in the age of generative AI (工作、生产力、生产者:在生成式人工智能时代被重新定义)」报告,整理并分享了其服务的 700 多家客户的 GenAI 转型经验。
以下是报告的核心内容:
-
工作革新、劳动力重塑、工人准备:GenAI 正在引领一场深远的工作变革,不仅能加速经济价值和商业增长,还带来了更具创造性的工作机会。企业管理层必须认识到这一转型,并积极准备以适应即将到来的变化。
-
GenAI 发展现状:大多数公司仍处于探索阶段,但已经认识到了其驱动创新的巨大潜力。为了促进这项技术在企业中的健康发展和合理应用,迫切需要建立和完善监管框架。
-
信任缺失的问题:GenAI 带来了技能短缺和技术理解不足的挑战,但工人和领导对此的观点差异巨大。
-
经济、商业、个人的三重机遇:通过模型分析了三种经济增长情景,并强调「以人为中心的GenAI整合方式」可能带来的显著经济价值。
-
加速释放 GenAI 全部潜力:领导者需要掌握新的领导方法和学习方法,重新思考和设计工作流程,并重塑劳动力结构,以适应技术的演进和市场的变化。
-
未来的展望:GenAI 正在以前所未有的速度推动变革,影响着社会的各个层面。
GenAI 学习路线图
报告最核心的就是这张图啦!清晰地描述了 GenAI 时代,领导者应具备的能力堆栈 👉 指路第 30 页。还有几张图的数据总结和洞察也非常精彩,放在下面啦!
🔔 01 掌握基础知识
- 熟练掌握数字技能 (包括云计算、数据处理、网络安全)
- 理解生成式AI的基本原理 (涵盖大语言模型LLMs、系统架构、负责任的AI原则)
- 学会提出关键问题
🔔 02 企业中的生成式AI应用
理解
- 评估企业数字化基础及对生成式AI的适应性
- 采取模块化策略实现价值增长
- 掌握扩展生成式AI应用的策略
- 洞察本行业及相邻行业的生成式AI发展趋势
- 审视合作伙伴生态系统
胜任
- 制定长期的生成式AI发展规划
- 确定投资的优先顺序
- 充分利用技术生态系统的资源
- 洞悉竞争环境的变化
- 通过负责任的AI实践避免发展中的失误
🔔 03 工作革新与劳动力重塑
理解
- 探索业务流程再设计的可能性
- 学习在工作流程中有效利用生成式AI工具
胜任
- 调整和优化劳动力结构
- 构建支持真正跨部门协作的组织架构
🔔 04 释放员工潜力
理解
- 掌握员工的学习方式
- 识别人才生命周期中的核心技能
- 明确公司的员工价值主张
- 掌握变革管理的艺术与科学
胜任
- 监督并实施有效的员工再培训计划,推广工作与学习的融合
- 根据生成式AI的影响制定人才战略
- 发展变革管理的有效能力和工具
- 评估变革的影响,确保员工在变革中获得更好的发展
🔔 05 负责任地扩展AI应用
- 实施企业级AI治理
- 考虑AI应用的监管、伦理和社会影响
- 制定风险缓解措施
↑ 图2. 生成式人工智能将对大量工作时间产生显著影响,实现工作流程的自动化或增强
↑ 图5. 企业若采纳负责任且以人为本的生成式AI应用方法,有望额外创造10.3万亿美元的经济价值
↑ 图9. 以消费品工作流程为例,利用生成式AI进行工作流程的创新性再设计
↑ 图10. 在生成式AI的未来,工作与角色被重新分配,从而释放出更多工作能力
官网链接 → https://www.accenture.com/us-en/insights/consulting/gen-ai-talent
4. 阿里巴巴「AI+」职业趋势报告:来自一线实践者的8个重大变化
阿里巴巴研究院最近新出了一份报告,总结了AI带来的8大职业发展趋势,并给出了一线实践者的实际职场案例。
-
「人力×算力」决定能力:人均算力消耗与企业组织的成长性之间存在显著正相关关系。未来,个人将更倾向于自费购买算力以增强个人竞争力。
-
每个人、每家企业都将拥有专属AI助理:AI助理将打破信息孤岛,整合企业和个人在不同平台上的数据与知识,提供全面的智能服务。
-
AI能力正在成为职场关键竞争力:AI技能正逐渐成为职场中与传统技能和知识相独立的一项必备技能。掌握并有效运用先进AI工具的个人将在职场中脱颖而出。
-
AI加剧择业「高不成低不就」结构性矛盾:AI技术革命导致就业市场出现两极分化,对中间层人员的需求减少。这要求社会更新就业观念和人才观念。
-
简历无需再简,面试不必见面:借助AI的长文本解析能力,简历可以更加详尽,用人单位能够更深入地了解求职者信息。AI面试技术确保了求职者与用人单位在公平的基础上进行更有效的匹配。
-
AI捕提重要信息,在线办公优势加强:企业将更加注重结果而非过程,减少对考勤的依赖,增加工作的灵活性和员工的自主权。传统的「955」工作模式正逐渐被更人性化的灵活工作制度所取代。
-
新职业为AI而生,旧职业重心转换:以AI为核心,社会职业和岗位结构将发生变革。一些职业的职责将被重新定义,为从业者提供更广阔的发展空间。
8.情绪价值含量决定工作附加值:在AI普及的背景下,效率变得普遍而不再稀缺。情绪价值的创造成为决定工作附加值的关键,这依赖于人与人之间的沟通和互动。
5. 万字长文梳理 Meta LlaMA 开源家族:从 LlaMA 1 到 LlaMA 3
Meta LlaMA 3 开源后,持续霸占着近期AI行业的热点榜。
从2023年2月的 LlaMA 1,到2023年7月的 LlaMA 2,再到2024年4月的 LlaMA 3,LlaMA 家族展示了大规模预训练语言模型的演进,及其在实际应用中的显著潜力。
如果你想了解 LlaMA 不同版本的差别,可以阅读这篇科普万字长文,从以下几个方面系统掌握其发展历程:
LlaMA进化史
模型架构
训练数据
训练方法
效果对比
社区生态
6. 符尧最新长文:LlaMA 3 开启规模游戏的下一篇章
符尧是 LLM 领域非常活跃的 KOL,经常在个人博客、知乎、X、朋友圈、播客访谈里分享他对最新技术进步的解读和判断。
他最近在博客撰文,分享了他对人工智能领域中「the Game of Scale (规模游戏)」 的观点,特别是文本数据和视频数据在AI模型中的作用,以及如何通过强化学习进一步提升模型的推理能力。
以下是文章的核心内容概要,感兴趣可以阅读原文 (有点干) :
-
文本数据的扩展可能已经达到了极限,因为大部分易获取的网络文本 (如Common Crawl、Github、Arxiv等) 已经被使用完毕。
-
肯定会有新的文本数据,比如更深入地从互联网挖掘、扫描图书馆书籍和合成数据。然而,要增加一个数量级是相当具有挑战性的——更可能的是,它们只是在当前数量级内的增量。
-
游戏的下一章从多模态开始,特别是统一的视频-语言生成模型,因为只有视频数据才能实现数量级的增长。
-
然而,坏消息是,似乎视频数据无法增加模型的推理能力——请记住,推理是标志强大模型的头号关键能力。
-
但好消息是,视频数据增加了其他一切,特别是与现实世界的联系,并展示了成为神经世界模型 (而不是像Zelda那样硬编码的物理引擎) 的强大潜力,这导致了从模拟物理反馈中学习的可能性。
-
从X反馈中扩展强化学习 似乎是继续增加模型推理能力最有前途的方向,其中X代表人类、人工智能和环境的反馈。
-
就像AlphaGo Zero在围棋上取得超越人类的表现一样,自我对弈和与环境互动可能是实现超越人类生成模型的方向。使模型在线并从反馈中迭代学习 (而不是单次离线优化) 可能会潜在地导致持续增加的推理能力。
-
规模化文本数据是游戏的第一章,达到了GPT-4的高峰,并由LlaMA 3总结。这个游戏的第二章将是统一的视频-语言生成建模和从反馈中迭代强化学习。
7. 创业季度复盘:大模型 RAG 系统的开发心得和思考
这是一位技术创业者,在经历了3个月的密集开发后,对 RAG 和 LLM 的一些心得。
日报整理了部分观点,感兴趣可以阅读原文呀!满满都是实践经验~
-
RAG应用的基础技术核心是:让大模型依靠现有的数据 (PDF/WORD/Excel/HTML等等) 精准的回答用户的问题。
-
两个核心点是📁 依赖现有的知识库 & 🏹 精准命中回答。
-
RAG + LLM 大模型系统的产品开发,是一个综合性非常强的系统性工程。
-
👆 如上图所示,可以理解为:LLM大模型是土壤,做 RAG 系统需要三颗树:数据工程、检索生成、业务系统。
-
数据工程: 知识库的形式丰富多彩,这其中配合RAG我们要做的事情非常多,包括文件类型、格式、分割策略、知识类型、索引方式等等。
-
检索生成:当我们处理完成数据后,配合大模型需要进行检索生成,而在这个过程中,包括:Prompt工程、算法策略、检索方式、中间件、大模型、查询处理等内容。
-
业务系统: 这是配合商业行为所衍生的业务系统&上层产品应用,包括租户、计费、开放平台、洞察、运营等业务系统,这些业务系统在TorchV AI的产品体系都一一体现。
原文链接 → https://www.xiaominfo.com/2024/04/01/torchv-summary-01/
8. 全方位技术梳理:详解 MoE 模型的前世今生,盘点15个 MoE 模型
模型 | 发布时间 | 备注 |
---|---|---|
GPT4 | 2023年3月 | 23年6月George Hotz爆料GPT4是8×220B模型 |
Mistral-8×7B | 2023年12月 | Mistral AI,开源 |
LlaMA-MoE | 2023年12月 | github开源项目 |
DeepSeek-MoE | 2024年1月 | 幻方量化,国内首个开源MoE模型,有技术报告 |
abab6 | 2024年1月 | MiniMax,号称千亿MoE,无开源,无细节发布 |
天工2.0 | 2024年2月 | 昆仑万维,无开源,无细节发布 |
Step-2 | 2024年3月 | 阶跃星辰,无开源,无细节发布 |
MM1 | 2024年3月 | 苹果,多模态MoE,无开源,有技术报告 |
Grok-1 | 2024年3月 | X,开源 |
Qwen1.5-MoE-A2.7B | 2024年3月 | 阿里巴巴,开源 |
DBRX | 2024年3月 | Databricks,开源 |
Jamba | 2024年3月 | AI21,开源 |
Mistral-8×22B | 2024年4月 | Mistral AI,开源 |
WizardLM-2-8×22B | 2024年4月 | 微软,开源 |
天工3.0 | 2024年4月 | 昆仑万维,400BMoE |
Arctic | 2024年4月 | Snowflake,480B,Dense-MoE Hybrid,开源 |
这是一篇 MoE 详细梳理,包括其经典工作、近期发布的 MoE 模型,以及各自的背景、实现思路和实现效果。
作者认为,截止2024年4月,中文领域做得比较好的是 DeepSeek-MoE 和 Qwen1.5-MoE。
以下是文章大纲。原文包含了大量的公式和配图,技术含量报表。感兴趣可以前往阅读:
1.时间线
① 上古时代
② RNN时代
③ Transformer时代
④ GPT时代
2.奠基工作
① 思路
② 模型设计
③ 损失函数优化
④ 实操技巧
3.LSTM MoE
① 背景
② 模型设计
③ 负载均衡
④ 实验
4.GShard
① 简介② 模型设计
③ 效果
5.Switch Transformer
① 模型设计
② 负载均衡
③ 实验
6.GLaM
① 简介
② 模型设计
③ 实验
7.ST-MoE
① 稳定性与效果分析
② 模型设计
③ 实验
8.DeepseekMoE
① 模型设计
② 负载均衡
③ 实验
9.DBRX
10.Qwen1.5-MoE
11.Mistral
① Mistral 8x7B
② Mistral 8x22B
◉ 点击 👀日报&周刊合集,订阅话题 #ShowMeAI日报,一览AI领域发展前沿,抓住最新发展机会!
◉ > 前往 🎡ShowMeAI,获取结构化成长路径和全套资料库,用知识加速每一次技术进步!