机器学习实战之AdaBoost元算法

今天学习的机器学习算法不是一个单独的算法,我们称之为元算法或集成算法(Ensemble)。其实就是对其他算法进行组合的一种方式。俗话说的好:“三个臭皮匠,赛过诸葛亮”。集成算法有多种形式:对同一数据集,使用多个算法,通过投票或者平均等方法获得最后的预测模型;同一算法在不同设置下的集成;同一算法在多个不同实例下的集成。本文着重讲解最后一种集成算法。

bagging

如果训练集有n个样本,我们随机抽取S次,每次有放回的获取m个样本,用某个单独的算法对S个数据集(每个数据集有m个样本)进行训练,这样就可以获得S个分类器。最后通过投票箱来获取最后的结果(少数服从多数的原则)。这就是bagging方法的核心思想,如图所示。

bagging中有个常用的方法,叫随机森林(random forest),该算法基于决策树,不仅对数据随机化,也对特征随机化。

数据的随机化:应用bootstrap方法有放回地随机抽取k个新的自助样本集。

特征随机化:n个特征,每棵树随机选择m个特征划分数据集。

每棵树无限生长,最后依旧通过投票箱来获取最后的结果。

boosting

boosting方法在模型选择方面和bagging一样:选择单个机器学习算法。但boosting方法是先在原数据集中训练一个分类器,然后将前一个分类器没能完美分类的数据重新赋权重(weight),用新的权重数据再训练出一个分类器,以此循环,最终的分类结果由加权投票决定。所以:boosting是串行算法(必须依赖上一个分类器),而bagging是并行算法(可以同时进行);boosting的分类器权重不同,bagging相同(下文中详细讲解)。

boosting也有很多版本,本文只讲解AdaBoost(自适应boosting)方法的原理和代码实践。如图所示,为AdaBoost方法的原理示意图。

首先,训练样本赋权重,构成向量D(初始值相等,如100个数据,那每个数据权重为1/100)。

在该数据上训练一个弱分类器并计算错误率和该分类器的权重值(alpha)。

基于该alpha值重新计算权重(分错的样本权重变大,分对的权重变小)。

循环2,3步,但完成给定的迭代次数或者错误阈值时,停止循环。

最终的分类结果由加权投票决定。

alpha和D的计算见下图(来源于机器学习实战):

AdaBoost方法实践

数据来源

数据通过代码创建:

from numpy import *

def loadSimpData():

dataArr = array([[1., 2.1], [2., 1.1], [1.3, 1.], [1., 1.], [2., 1.]])

labelArr = [1.0, 1.0, -1.0, -1.0, 1.0]

return dataArr, labelArr

弱决策树

该数据有两个特征,我们只用一个特征进行分类(弱分类器),然后选择精度最高的分类器。

def stumpClassify(dataMatrix, dimen, threshVal, threshIneq):

retArray = ones((shape(dataMatrix)[0],1))

if threshIneq == 'lt':

retArray[dataMatrix[:,dimen] <= threshVal] = -1.0

else:

retArray[dataMatrix[:,dimen] > threshVal] = -1.0

return retArray

def buildStump(dataArr, labelArr, D):

dataMat = mat(dataArr)

labelMat = mat(labelArr).T

m, n = shape(dataMat)

numSteps = 10.0

bestStump = {}

bestClasEst = mat(zeros((m, 1)))

minError = inf

for i in range(n):

rangeMin = dataMat[:, i].min()

rangeMax = dataMat[:, i].max()

stepSize = (rangeMax-rangeMin)/numSteps

for j in range(-1, int(numSteps)+1):

for inequal in ['lt', 'gt']:

threshVal = (rangeMin + float(j) * stepSize)

predictedVals = stumpClassify(dataMat, i, threshVal, inequal)

# print predictedVals

errArr = mat(ones((m, 1)))

errArr[predictedVals == labelMat] = 0

weightedError = D.T*errArr

# print("split: dim %d, thresh %.2f, thresh ineqal: %s, the weighted error is %.3f" % (i, threshVal, inequal, weightedError))

if weightedError < minError:

minError = weightedError

bestClasEst = predictedVals.copy()

bestStump['dim'] = i

bestStump['thresh'] = threshVal

bestStump['ineq'] = inequal

return bestStump, minError, bestClasEst

AdaBoost算法

该函数用于构造多棵树,并保存每棵树的信息。

def adaBoostTrainDS(dataArr,classLabels, numIt=40):

weakClassArr = []

m = shape(dataArr)[0]

D = mat(ones((m,1))/m)

aggClassEst = mat(zeros((m,1)))

for i in range(numIt):

bestStump,error,classEst = buildStump(dataArr, classLabels, D)

print('D:',D.T)

alpha = float(0.5*log((1.0-error)/max(error,1e-16)))

bestStump['alpha'] = alpha

weakClassArr.append(bestStump)

print('classEst:',classEst.T)

expon = multiply(-1*alpha*mat(classLabels).T,classEst)

D = multiply(D, exp(expon))

D = D/D.sum()

aggClassEst += alpha*classEst

print('aggClassEst:',aggClassEst.T)

aggErrors = multiply(sign(aggClassEst) != mat(classLabels).T, ones((m,1)))

errorRate = aggErrors.sum()/m

print('total error:',errorRate,'\n')

if errorRate == 0:break

return weakClassArr

算法优缺点

优点:精度高

缺点:容易过拟合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShuYunBIGDATA

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值