FPGA人工智能网络模型设计简介

本文介绍了FPGA的基础知识,包括其可编程逻辑单元和开发工具,然后详细阐述了如何在FPGA上实现卷积神经网络(CNN),以LeNet-5模型为例,讲解了数据存储、卷积、池化和全连接操作的FPGA实现步骤,并提供了Verilog代码示例。
摘要由CSDN通过智能技术生成

目录

一、FPGA基础知识

二、卷积神经网络(CNN)的FPGA实现


        人工智能(Artificial Intelligence, AI)是近年来广受关注的技术领域之一。随着深度学习算法的发展,卷积神经网络(Convolutional Neural Networks, CNN)和循环神经网络(Recurrent Neural Networks, RNN)等模型在计算机视觉、自然语言处理等领域得到广泛应用。FPGA(Field-Programmable Gate Array)作为一种可编程逻辑器件,具有并行性强、功耗低、时延小等优点,在实现人工智能方面具有一定的优势。本文将以教程的形式,详细介绍如何通过FPGA实现人工智能的相关网络模型。

一、FPGA基础知识

FPGA概述
       FPGA是一种可编程逻辑器件,通过编程对其内部电路进行配置。FPGA具有高度的灵活性和可编程性,可以根据不同的应用需求进行配置和优化。FPGA的主要构成部分包括可编程逻辑单元(Logic Elements, LE)、存储单元、输入输出接口等。

FPGA编程语言
       FPGA可以使用不同的编程语言进行编程,包括硬件描述语言(Hardware Description Language, HDL)和高级语言(如C语言)。HDL是一种专门用于描述硬件电路的语言,常用的HDL包括Verilog和VHDL。高级语言可以通过编译器转换为HDL进行硬件描述。在本文中,我们将使用Verilog作为FPGA的编程语言。

FPGA开发工具
      FPGA开发工具是用于编译、仿真和下载FPGA代码的软件工具。常见的FPGA开发工具包括Xilinx ISE、Vivado、Altera Quartus等。本文将以Xilinx Vivado为例进行介绍。

二、卷积神经网络(CNN)的FPGA实现

CNN概述
       CNN是近年来广泛应用于计算机视觉领域的一种深度学习网络模型。CNN将卷积层、池化层和全连接层等结构组合在一起,通过反向传播算法进行训练,可以实现图像分类、目标检测等任务。

CNN在FPGA上的实现
        将CNN移植到FPGA上,需要将其转换为硬件电路。CNN包括卷积操作、池化操作和全连接操作等,这些操作可以使用FPGA的可编程逻辑单元进行实现。在FPGA上实现CNN的关键是如何将大量的乘法操作和加法操作进行并行计算。可以使用FPGA的DSP模块和BRAM模块进行优化,以提高计算效率。此外,FPGA还可以使用并行性强的Pipelining技术进行优化。

下面以一个简单的CNN模型LeNet-5为例,介绍如何在FPGA上实现CNN。

(1)CNN模型LeNet-5

       LeNet-5是一种经典的CNN模型,用于手写数字识别。LeNet-5包括两个卷积层、两个池化层和三个全连接层。具体结构如下图所示:

(2)FPGA实现步骤

① 数据存储和预处理

       将手写数字图片转换为二进制数据,存储在FPGA的BRAM中。对于每个像素点,可以使用8位二进制数表示。

② 卷积操作

        卷积操作是CNN中的核心操作,可以使用FPGA的DSP模块进行优化,以提高计算效率。在FPGA上实现卷积操作需要进行以下步骤:

a. 将输入数据和卷积核分别存储在BRAM中。

b. 将卷积核的权重参数输入到FPGA的DSP模块中,通过乘法和加法操作计算卷积操作的结果。

c. 将卷积操作的结果存储在BRAM中,作为下一层的输入数据。

d. 通过滑动窗口的方式进行卷积操作,即将卷积核在输入数据上进行滑动,每次计算一个卷积结果。

③ 池化操作

       池化操作可以使用FPGA的BRAM模块进行优化,以提高计算效率。在FPGA上实现池化操作需要进行以下步骤:

a. 将卷积操作的结果存储在BRAM中。

b. 通过滑动窗口的方式进行池化操作,即从每个小区域中选择一个最大值或平均值作为池化结果。

c. 将池化操作的结果存储在BRAM中,作为下一层的输入数据。

④ 全连接操作

       全连接操作可以使用FPGA的BRAM模块进行优化,以提高计算效率。在FPGA上实现全连接操作需要进行以下步骤:

a. 将池化操作的结果展开为一维向量,作为全连接层的输入数据。

b. 将权重矩阵和偏置向量分别存储在BRAM中。

c. 通过乘法和加法操作计算全连接层的结果。

d. 将全连接层的结果作为最终的输出。

(3)FPGA实现代码

下面是LeNet-5模型在FPGA上的Verilog实现代码:


module lenet5(input clk, input rst, input [31:0] data_in, output [9:0] result);

// 定义卷积核和池化核的权重参数
parameter [2:0] conv1_w[0:5][0:4] = '{'{1, 0, -1, 0, 1}, {1, 1, -1, -1, 0}, {0, 1, 1, -1, -1}, {-1, 0, -1, 1, -1}, {0, -1, 0, -1, 0}, {-1, 0, 1, 0, -1}};
parameter [1:0] pool1_w[0:1][0:1] = '{'{2'b10, 2'b11}, {2'b01, 2'b00}};
parameter [2:0] conv2_w[0:5][0:5] = '{'{-1, -1, 0, 1, 1}, {1, 0, -1, -1, 0}, {-1, -1, 1, 1, 0}, {0, 1, 1, 0, -1}, {1, 1, -1, -1, 0}, {0, -1, 0, 1, -1}};
parameter [1:0] pool2_w[0:1][0:1] = '{'{2'b10, 2'b11}, {2'b01, 2'b00}};

// 定义BRAM模块和DSP模块的实例化
bram #(32, 1024) mem1 (.clk(clk), .we(1'b0), .addr(data_in[9:0]), .data_out(mem1_out));
bram #(32, 1024) mem2 (.clk(clk), .we(1'b0), .addr(mem1_out), .data_out(mem2_out));
bram #(32, 1024) mem3 (.clk(clk), .we(1'b0), .addr(mem2_out), .data_out(mem3_out));
bram #(32, 1024) mem4 (.clk(clk), .we(1'b0), .addr(mem3_out), .data_out(mem4_out));
bram #(32, 1024) mem5 (.clk(clk), .we(1'b0), .addr(mem4_out), .data_out(mem5_out));
bram #(32, 1024) mem6 (.clk(clk), .we(1'b0), .addr(mem5_out), .data_out(mem6_out));
bram #(32, 1024) mem7 (.clk(clk), .we(1'b0), .addr(mem6_out), .data_out(mem7_out));
bram #(32, 1024) mem8 (.clk(clk), .we(1'b0), .addr(mem7_out), .data_out(mem8_out));
bram #(32, 1024) mem9 (.clk(clk), .we(1'b0), .addr(mem8_out), .data_out(mem9_out));
bram #(32, 1024) mem10 (.clk(clk), .we(1'b0), .addr(mem9_out), .data_out(mem10_out));
bram #(32, 1024) mem11 (.clk(clk), .we(1'b0), .addr(mem10_out), .data_out(mem11_out));
bram #(32, 1024) mem12 (.clk(clk), .we(1'b0), .addr(mem11_out), .data_out(mem12_out));
bram #(32, 1024) mem13 (.clk(clk), .we(1'b0), .addr(mem12_out), .data_out(mem13_out));
bram #(32, 1024) mem14 (.clk(clk), .we(1'b0), .addr(mem13_out), .data_out(mem14_out));
bram #(32, 1024) mem15 (.clk(clk), .we(1'b0), .addr(mem14_out), .data_out(mem15_out));
bram #(32, 1024) mem16 (.clk(clk), .we(1'b0), .addr(mem15_out), .data_out(mem16_out));
bram #(32, 1024) mem17 (.clk(clk), .we(1'b0), .addr(mem16_out), .data_out(mem17_out));
bram #(32, 1024) mem18 (.clk(clk), .we(1'b0), .addr(mem17_out), .data_out(mem18_out));
bram #(32, 1024) mem19 (.clk(clk), .we(1'b0), .addr(mem18_out), .data_out(mem19_out));
bram #(32, 1024) mem20 (.clk(clk), .we(1'b0), .addr(mem19_out), .data_out(mem20_out));
bram #(32, 1024) mem21 (.clk(clk), .we(1'b0), .addr(mem20_out), .data_out(mem21_out));
bram #(32, 1024) mem22 (.clk(clk), .we(1'b0), .addr(mem21_out), .data_out(mem22_out));
bram #(32, 1024) mem23 (.clk(clk), .we(1'b0), .addr(mem22_out), .data_out(mem23_out));
bram #(32, 1024) mem24 (.clk(clk), .we(1'b0), .addr(mem23_out), .data_out(mem24_out));
bram #(32, 1024) mem25 (.clk(clk), .we(1'b0), .addr(mem24_out), .data_out(mem25_out));
bram #(32, 1024) mem26 (.clk(clk), .we(1'b0), .addr(mem25_out), .data_out(mem26_out));
bram #(32, 1024) mem27 (.clk(clk), .we(1'b0), .addr(mem26_out), .data_out(mem27_out));
bram #(32, 1024) mem28 (.clk(clk), .we(1'b0), .addr(mem27_out), .data_out(mem28_out));
bram #(32, 1024) mem29 (.clk(clk), .we(1'b0), .addr(mem28_out), .data_out(mem29_out));
bram #(32, 1024) mem30 (.clk(clk), .we(1'b0), .addr(mem29_out), .data_out(mem30_out));
bram #(32, 1024) mem31 (.clk(clk), .we(1'b0), .addr(mem30_out), .data_out(mem31_out));
bram #(32, 1024) mem32 (.clk(clk), .we(1'b0), .addr(mem31_out), .data_out(mem32_out));
bram #(32, 1024) mem33 (.clk(clk), .we(1'b0), .addr(mem32_out), .data_out(mem33_out


module pipeline (clk, rst, in_data, out_data);

parameter WIDTH = 32;
parameter DEPTH = 1024;

input clk, rst;
input [WIDTH-1:0] in_data;
output [WIDTH-1:0] out_data;

/* Pipeline registers */
reg [WIDTH-1:0] mem1_out, mem2_out, mem3_out, mem4_out, mem5_out;
reg [WIDTH-1:0] mem6_out, mem7_out, mem8_out, mem9_out, mem10_out;
reg [WIDTH-1:0] mem11_out, mem12_out, mem13_out, mem14_out, mem15_out;
reg [WIDTH-1:0] mem16_out, mem17_out, mem18_out, mem19_out, mem20_out;
reg [WIDTH-1:0] mem21_out, mem22_out, mem23_out, mem24_out, mem25_out;
reg [WIDTH-1:0] mem26_out, mem27_out, mem28_out, mem29_out, mem30_out;
reg [WIDTH-1:0] mem31_out, mem32_out, mem33_out, out_data_reg;

/* Initial values */
initial begin
    mem1_out = 0;
    mem2_out = 0;
    mem3_out = 0;
    mem4_out = 0;
    mem5_out = 0;
    mem6_out = 0;
    mem7_out = 0;
    mem8_out = 0;
    mem9_out = 0;
    mem10_out = 0;
    mem11_out = 0;
    mem12_out = 0;
    mem13_out = 0;
    mem14_out = 0;
    mem15_out = 0;
    mem16_out = 0;
    mem17_out = 0;
    mem18_out = 0;
    mem19_out = 0;
    mem20_out = 0;
    mem21_out = 0;
    mem22_out = 0;
    mem23_out = 0;
    mem24_out = 0;
    mem25_out = 0;
    mem26_out = 0;
    mem27_out = 0;
    mem28_out = 0;
    mem29_out = 0;
    mem30_out = 0;
    mem31_out = 0;
    mem32_out = 0;
    mem33_out = 0;
    out_data_reg = 0;
end

/* Pipeline stages */
bram #(WIDTH, DEPTH) mem1 (.clk(clk), .we(1'b0), .addr(0), .data_out(mem1_out));
bram #(WIDTH, DEPTH) mem2 (.clk(clk), .we(1'b0), .addr(mem1_out), .data_out(mem2_out));
bram #(WIDTH, DEPTH) mem3 (.clk(clk), .we(1'b0), .addr(mem2_out), .data_out(mem3_out));
bram #(WIDTH, DEPTH) mem4 (.clk(clk), .we(1'b0), .addr(mem3_out), .data_out(mem4_out));
bram #(WIDTH, DEPTH) mem5 (.clk(clk), .we(1'b0), .addr(mem4_out), .data_out(mem5_out));
bram #(WIDTH, DEPTH) mem6 (.clk(clk), .we(1'b0), .addr(mem5_out), .data_out(mem6_out));
bram #(WIDTH, DEPTH) mem7 (.clk(clk), .we(1'b0), .addr(mem6_out), .data_out(mem7_out));
bram #(WIDTH, DEPTH) mem8 (.clk(clk), .we(1'b0), .addr(mem7_out), .data_out(mem8_out));
bram #(WIDTH, DEPTH) mem9 (.clk(clk), .we(1'b0), .addr(mem8_out), .data_out(mem9_out));
bram #(WIDTH, DEPTH) mem10 (.clk(clk), .we(1'b0), .addr(mem9_out), .data_out(mem10_out));
bram #(WIDTH, DEPTH) mem11 (.clk(clk), .we(1'b0), .addr(mem10_out), .data_out(mem11_out));
bram #(WIDTH, DEPTH) mem12 (.clk(clk), .we(1'b0), .addr(mem11_out), .data_out(mem12_out));
bram #(WIDTH, DEPTH) mem13 (.clk(clk), .we(1'b0), .addr(mem12_out), .data_out(mem13_out));
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Simuworld

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值