引言
由于个人安排的原因,没有时间参加微信大数据挑战赛,倒是参加了2021年中国高校大数据挑战赛。这次比赛做的是中国电信提供数据集的A题,是一个异常检测的题目,一个人做的本科组二等奖,觉得还是不错的。(B题是华为提供的基于深度学习的目标检测的题目,这个没啥意思纯写算法)A题数据量还好,虽然是大数据竞赛,但个人觉得和2021山西省数学建模竞赛B题的数据量比起来还是差点。
题目回顾
异常检测(异常诊断/发现)、异常预测、趋势预测,是智能运维中首当其冲 需要解决的问题。这类问题是通过业务、系统、产品直接关联的 KPI 业务指标 进行分析诊断,指标主要包括用户感知类(如页面打开延时)、服务性能(如用 户点击量)、服务器硬件健康状况(如 CPU 利用率、内存使用率)等关键性能指 标。 不同场景的运维,分析的指标种类差异较大,但都具备时序性特点,不同场 景的 KPI 指标,以毫秒、秒、分钟、小时、天为时间间隔的数据序列都会出现, 有些复杂场景的业务,往往会混合多个时间间隔的数据,但均为随时间变化而变 化的时序数据。
以小区内的平均用户数、小区PCDP流量以及平均激活用户数三个指标为主要研究对象,完成以下问题:
问题 1 异常检测:利用附件的指标数据,对所有小区在上述三个关键指标上 检测出这 29 天内共有多少个异常数值,其中异常数值包含以下两种情况:异常 孤立点、异常周期。
问题 2 异常预测:针对问题 1 检测出的异常数值,通过该异常数值前的数据 建立预测模型,预测未来是否会发生异