2021中国高校大数据挑战赛A题复盘+解题思路

本文回顾了2021年中国高校大数据挑战赛A题,涉及异常检测和预测。作者使用Python、R、MATLAB解决了一个基于电信数据的异常检测问题,通过对比KPI增减趋势和数据降维处理,结合傅里叶变换和混沌序列算法找到异常点。此外,针对异常预测和趋势预测,作者应用了ARIMA、ARIMAX和BP神经网络模型。反思中提到特征选择和模型效果仍有提升空间。
摘要由CSDN通过智能技术生成

引言

由于个人安排的原因,没有时间参加微信大数据挑战赛,倒是参加了2021年中国高校大数据挑战赛。这次比赛做的是中国电信提供数据集的A题,是一个异常检测的题目,一个人做的本科组二等奖,觉得还是不错的。(B题是华为提供的基于深度学习的目标检测的题目,这个没啥意思纯写算法)A题数据量还好,虽然是大数据竞赛,但个人觉得和2021山西省数学建模竞赛B题的数据量比起来还是差点。

题目回顾

异常检测(异常诊断/发现)、异常预测、趋势预测,是智能运维中首当其冲 需要解决的问题。这类问题是通过业务、系统、产品直接关联的 KPI 业务指标 进行分析诊断,指标主要包括用户感知类(如页面打开延时)、服务性能(如用 户点击量)、服务器硬件健康状况(如 CPU 利用率、内存使用率)等关键性能指 标。 不同场景的运维,分析的指标种类差异较大,但都具备时序性特点,不同场 景的 KPI 指标,以毫秒、秒、分钟、小时、天为时间间隔的数据序列都会出现, 有些复杂场景的业务,往往会混合多个时间间隔的数据,但均为随时间变化而变 化的时序数据。

以小区内的平均用户数、小区PCDP流量以及平均激活用户数三个指标为主要研究对象,完成以下问题:

问题 1 异常检测:利用附件的指标数据,对所有小区在上述三个关键指标上 检测出这 29 天内共有多少个异常数值,其中异常数值包含以下两种情况:异常 孤立点、异常周期。

问题 2 异常预测:针对问题 1 检测出的异常数值,通过该异常数值前的数据 建立预测模型,预测未来是否会发生异

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

泽楷学量化

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值