贝叶斯决策及效用函数

本文详细介绍了贝叶斯决策的基本概念,包括贝叶斯公式在决策中的作用,先验和后验概率的概念,以及完全信息的期望价值。讨论了贝叶斯决策的优点,如能结合主观概率与信息价值,同时也指出其局限性,如计算复杂性和对主观概率的依赖。此外,文章提到了效用函数在实际经济问题中的重要性,强调了在决策时考虑个人偏好和不可忽略因素的必要性。
摘要由CSDN通过智能技术生成

1.1贝叶斯决策的基本情况:

贝叶斯决策主要是决策,其理论基础和模型基础是全概率公式和贝叶斯公式。(具体可参考概率论课程的课本)

1.2 贝叶斯公式在贝叶斯决策中所起的作用:

(1)如果试验E有两个相关的试验E1,E2复合而成,E1有若干种可能的结果,E2在E1的基础上也有若干种可能的结果,如果已知和E2的结果有关某事件发生了,求和试验E1的结果有关事件的概率,可以用贝叶斯公式.试验E1的几种可能的结果就构成了完备事件组(贝叶斯决策中的重要基础条件)。
(2)如果把样本空间的一个划分A1, A2, …, An看作是导致事件B发生的各种原因,如果B发生了,求P(Aj|B)可以用贝叶斯公式。

1.3 贝叶斯决策中的重要概念:

先验概率:
从概念上说,是指根据以往经验和分析得到的概率,如全概率公式,它往往作为“由因得果”问题中的“因”出现的概率。
从例子上来说,假设我们在阿富汗山区发现一个密室,那么在这个山洞中可能有n种不同的,匪夷所思的,可能发生的事件。那么就为先验概率。而通过资料搜索,有一个更贴近生活的例子:在将来的,还未发生的选举中投票给特定政治家的选民相对比例的概率也可视为先验概率。
后验概率:
从概念上说,是指在得到实验结果的信息后重新修正的概率,是“执果寻因”问题中的“果”。后验概率可以通过贝叶斯公式,用先验概率和似然函数计算出来。
从例子上来说,和上面一样,在阿富汗那个密室里面“本拉登在洞中吃狗肉”发生的概率为先验概率。那么,“听到狗叫”我们设为事件,此时,对于事件(同上文)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

泽楷学量化

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值