1.1贝叶斯决策的基本情况:
贝叶斯决策主要是决策,其理论基础和模型基础是全概率公式和贝叶斯公式。(具体可参考概率论课程的课本)
1.2 贝叶斯公式在贝叶斯决策中所起的作用:
(1)如果试验E有两个相关的试验E1,E2复合而成,E1有若干种可能的结果,E2在E1的基础上也有若干种可能的结果,如果已知和E2的结果有关某事件发生了,求和试验E1的结果有关事件的概率,可以用贝叶斯公式.试验E1的几种可能的结果就构成了完备事件组(贝叶斯决策中的重要基础条件)。
(2)如果把样本空间的一个划分A1, A2, …, An看作是导致事件B发生的各种原因,如果B发生了,求P(Aj|B)可以用贝叶斯公式。
1.3 贝叶斯决策中的重要概念:
先验概率:
从概念上说,是指根据以往经验和分析得到的概率,如全概率公式,它往往作为“由因得果”问题中的“因”出现的概率。
从例子上来说,假设我们在阿富汗山区发现一个密室,那么在这个山洞中可能有n种不同的,匪夷所思的,可能发生的事件。那么就为先验概率。而通过资料搜索,有一个更贴近生活的例子:在将来的,还未发生的选举中投票给特定政治家的选民相对比例的概率也可视为先验概率。
后验概率:
从概念上说,是指在得到实验结果的信息后重新修正的概率,是“执果寻因”问题中的“果”。后验概率可以通过贝叶斯公式,用先验概率和似然函数计算出来。
从例子上来说,和上面一样,在阿富汗那个密室里面“本拉登在洞中吃狗肉”发生的概率为先验概率。那么,“听到狗叫”我们设为事件,此时,对于事件(同上文)