论文笔记007-《Neighborhood Matching Network for Entity Alignment》

1. 简介

题目:《Neighborhood Matching Network for Entity Alignment

来源:ACL-2020

链接:论文链接

代码:Code和Dataset

关键字:Entity Alignment

2. 研究背景

  从原先的大量依赖人工的参与实体对齐任务,到Embedding-Based的实体对齐方法的出现,大大缩减了人为的参与度,但是依旧需要一定量的训练种子对,然后提出了基于GCN的相关方法,这些方法有一个假设前提-相似实体对的周围邻近结构也会很相似。但是实际情况不是这样的。如下图:

  从上图中可以看到,对于有些对齐的实体,其周围的邻接点数目相差是很大的,而且就算不考虑数量的差别(图中第二组),其邻接点中相似的数量也很少,很多节点都是不相似,同时作者通过实验发现,随着邻接点的数目增加,其Embedding-Based方法的准确率会大大下降,同时邻接点的数目增多,同时其评价邻接点的相似度的难度也很大,其GCN方法的计算量的代价也会大大增加。作者由此分析提出了相应的改进的NMN模型。

3.Related Work

  作者在本段落介绍了其模型四个组成部分的相关研究状况。

3.1 Embedding-based entity alignment

  早期的Embedding-Based方法TransE-2013,通过对KG的结构进行编码来实现对齐,其变形有MTransE-2017、JAPE-2017、IPTransE-2017、BootEA-2018、NAEA-2019、OTEA-2019。最近提出的模型用GCN去对KG建模,如GCN-Align-2018、GMNN-2019、RDGCN-2019、AVR-GCN-2019、HGCN-JE-2019。除了使用结构信息,还有使用其他信息的方法,如KDCoE-2018、AttrE-2019、MultiKE-2019、HMAN-2019这些方法使用其他的信息去改善实体的表示学习。

  然而上面的方法都忽视了其邻接点的异构性。MuGNN-2019AliNet-2020最新的两个去解决这个问题的模型。但是其两个模型依旧有些缺点,前者需要大量预先训练的实体和关系数据,这个很代价很高。后者模型只考虑的一阶邻接点同等的重要性,然后并非所有的一阶邻接点都重要,作者考虑到上述的缺点,自己的模型NMN只会提取一些有用的邻接点,同时只需要一些预先训练的数据。

3.2 Graph neural networks

  GNNs模型最近被很多NLP的研究使用,如语义标签和机器翻译等。GNNs的结点表达通过不断的迭代聚集周围邻接点的表达,目前有很多其变种模型,如Graph Convolutional Network (GCN)-2017、Relational Graph Convolutional Network-2018、Graph Attention Network-2018等,考虑到其模型对图结构的优越性,作者也是使用图模型去建模结构信息。

3.3 Graph matching

  图之间的匹配测量一般通过精准的匹配或者通过结构信息计算编辑距离, 近年来一个模型Graph MatchingNetwork (GMN) (Li et al., 2019b),其是通过基于注意力机在图对上进行推理匹配的方法,作者采纳其类似的方法去捕获邻接点的差异点。

3.4 Graph sampling

  这个图取样一般会选取原图中一部分结点或者边,一些流行的方法有vertex-edge-raversal-based sampling这三类,作者采用的是选取结点的方法,去选取一些有用的邻接点。

4. Approach

  作者将知识图谱表示为 G = ( E , R , T ) G=(E,R,T) G=(E,R,T),分别表示实体、关系、三元组。

4.1 Overview of NMN

  作者的模型分为4部分:1)Structure Embedding, 2)Neighborhood Sampling,3)Neighborhood Matching,4)Neighborhood Aggregation for Generating Embeddings,其将两个图一起输入模型,同时进行嵌入学习,最后通过学习到的表示计算实体之间距离判断相似性,如下图:

4.2 KG Structure Embedding

  为了学习实体的表示,作者这里使用多层GCN去聚集高纬的邻接点结构信息,NMN使用了预先已经训练好的词向量初始化图,这个策略在(Xu et al., 2019; Wu et al., 2019a)研究中被证实了是很有效去学习实体名的编码方式。作者将两个图一起作为GCN的输入,每层更新结点表示的方法如下:
h i ( l ) = ReLU ⁡ ( ∑ j ∈ N i ∪ { i } 1 ϵ i W ( l ) h j ( l − 1 ) ) (1) \boldsymbol{h}_{i}^{(l)}=\operatorname{ReLU}\left(\sum_{j \in N_{i} \cup\{i\}} \frac{1}{\epsilon_{i}} \mathbf{W}^{(l)} \boldsymbol{h}_{j}^{(l-1)}\right) \tag {1} hi(l)=ReLUjNi{i}ϵi1W(l)hj(l1)(1)
  其中 { h 1 ( l ) , h 2 ( l ) , … , h n ( l ) ∣ h i ( l ) ∈ R d ( l ) } \left\{\boldsymbol{h}_{1}^{(l)}, \boldsymbol{h}_{2}^{(l)}, \ldots, \boldsymbol{h}_{n}^{(l)} \mid \boldsymbol{h}_{i}^{(l)} \in \mathbb{R}^{d^{(l)}}\right\} {h1(l),h2(l),,hn(l)hi(l)Rd(l)}是第 l l lGCN的输出结点特征,而其中的 ϵ i \epsilon_{i} ϵi是归一化常数, N i N_{i} Ni是结点 i i i的邻接点集合,而 W ( l ) ∈ R d ( l ) × ( l − 1 ) \mathbf{W}^{(l)}\in \mathbb{R}^{d^{(l)\times (l-1)} } W(l)Rd(l)×(l1)是第 i i i层的参数。为了控制累积误差的影响,作者这里引入了门控网络。

4.3 Neighborhood Sampling

  实体的一阶邻接点对于其对齐的判断非常重要,但是不是所有的邻接点都有用,作者模型中采用了一种降采样的方式,只选取最有用的邻接点。作者这里认为:一个邻接点越出现在实体的面前频率越高,其对中心实体的重要性就越高。显示中联系越紧密的经常一起出现在上下文中。

  对于给定实体 i i i,其邻接结点 e i _ j e_{i\_j} ei_j的取样概率如下:
p ( h i − j ∣ h i ) = softmax ⁡ ( h i W s h i − j T ) = exp ⁡ ( h i W s h i − j T ) ∑ k ∈ N i exp ⁡ ( h i W s h i − k T ) (2) \begin{aligned} p\left(\boldsymbol{h}_{i_{-} j} \mid \boldsymbol{h}_{i}\right) &=\operatorname{softmax}\left(\boldsymbol{h}_{i} \mathbf{W}_{s} \boldsymbol{h}_{i_{-} j}^{T}\right) \\ &=\frac{\exp \left(\boldsymbol{h}_{i} \mathbf{W}_{s} \boldsymbol{h}_{i_{-} j}^{T}\right)}{\sum_{k \in N_{i}} \exp \left(\boldsymbol{h}_{i} \mathbf{W}_{s} \boldsymbol{h}_{i_{-} k}^{T}\right)} \end{aligned} \tag {2} p(hijhi)=softmax(hiWshijT)=kNiexp(hiWshikT)exp(hiWshijT)(2)
  其中 N i N_{i} Ni是一阶邻结点的指示集合, h i h_{i} hi h i _ j h_{i\_j} hi_j是学习到的实体表达,而 W s \mathbf{W}_{s} Ws是共享的参数矩阵。

4.4 Neighborhood Matching

  作者通过上面的取样以后,后续的操作只会在对应的子图上面进行。作者认为相似实体的邻接点也会尽可能相似,作者通过这个思路来判断邻接点的相似性。

Candidate selection

  作者考虑到,要是针对实体 i i i的子图和另一个KG中的所有实体子图进行比较,然后再去选择最相似的子图,这样会非常耗费时间,所以作者先选择一些可能相似的实体候选集合出来,然后就只和这些集合里面的元素进行比较,这样会大大降低计算量。而对于被选择的后续实体选取规格如下:
p ( h j ∣ h i ) = exp ⁡ ( ∥ h i − h j ∥ L 1 ) ∑ k ∈ E 2 exp ⁡ ( ∥ h i − h k ∥ L 1 ) (3) p\left(\boldsymbol{h}_{j} \mid \boldsymbol{h}_{i}\right)=\frac{\exp \left(\left\|\boldsymbol{h}_{i}-\boldsymbol{h}_{j}\right\|_{L_{1}}\right)}{\sum_{k \in E_{2}} \exp \left(\left\|\boldsymbol{h}_{i}-\boldsymbol{h}_{k}\right\|_{L_{1}}\right)} \tag {3} p(hjhi)=kE2exp(hihkL1)exp(hihjL1)(3)
Cross-graph neighborhood matching

  作者收到图匹配研究的启发,其将所有的子图作为输入,为每一个邻接点计算其对应的匹配向量, ( e i , c i k ) (e_i,c_{ik}) (ei,cik)是要评价的实体对,其分别属于 E 1 E_{1} E1 E 2 E_{2} E2,而且 c i k c_{ik} cik是实体 e i e_{i} ei的候选集中的, p p p q q q分别是实体 e i e_{i} ei e i k e_{ik} eik的邻接点,那么对于实体 q q q的跨图的匹配向量是:
a p q = exp ⁡ ( h p ⋅ h q ) ∑ q ′ ∈ N i k s exp ⁡ ( h p ⋅ h q ′ ) (4) a_{p q}= \frac{\exp \left(\boldsymbol{h}_{p} \cdot \boldsymbol{h}_{q}\right)}{\sum_{q^{\prime} \in N_{i_{k}}^{s}} \exp \left(\boldsymbol{h}_{p} \cdot \boldsymbol{h}_{q^{\prime}}\right)} \tag {4} apq=qNiksexp(hphq)exp(hphq)(4)

m p = ∑ q ∈ N i k s a p q ( h p − h q ) (5) \boldsymbol{m}_{p} =\sum_{q \in N_{i_{k}}^{s}} a_{p q}\left(\boldsymbol{h}_{p}-\boldsymbol{h}_{q}\right) \tag {5} mp=qNiksapq(hphq)(5)

  其中 q p q q_{pq} qpq是一个注意力权重, m p m_{p} mp是一个匹配向量,其描绘了其他对应子图中最近邻接点和 h p h_{p} hp之间差别。然后作者将其输出和原先的结点表达联合:
h ^ p = [ h p ∥ β ∗ m p ] (6) \hat{h}_{p}=\left[h_{p} \| \beta * m_{p}\right] \tag {6} h^p=[hpβmp](6)
  匹配向量对于相似的两个邻接点,其值接近于 0 0 0向量,其表达就非常而接近,而对于不相似的结点,其不对称会在传播过程中不断增大,最后结果证明该匹配机制很有效。

4.5 Neighborhood Aggregation

  这个模块就是整合其邻接点的连接信息,即结构嵌入表示,同时将上一步匹配网络学习到的匹配信息结合在一起,对于其取样的的邻接点 { h ^ p } \{\hat{h}_{p}\} {h^p},对于实体 i i i来说其匹配网络学习到的邻接点表示为 g i g_{i} gi,然后将其和结构嵌入表示联结起来:
g i = ( ∑ p ∈ N i s σ ( h ^ p W g a t e ) ⋅ h ^ p ) W N (7) \boldsymbol{g}_{i}=\left(\sum_{p \in N_{i}^{s}} \sigma\left(\hat{\boldsymbol{h}}_{p} \mathbf{W}_{g a t e}\right) \cdot \hat{\boldsymbol{h}}_{p}\right) \mathbf{W}_{N} \tag {7} gi=pNisσ(h^pWgate)h^pWN(7)
h i match = [ g i ∥ h i ] (8) \boldsymbol{h}_{i}^{\text {match}}=\left[\boldsymbol{g}_{i} \| \boldsymbol{h}_{i}\right] \tag {8} himatch=[gihi](8)

5. Entity Alignment and Training

Pre-training

  作者首先预先训练基于GCN的嵌入模型去提供可信的实体表达,里面通过测量两个实体的距离来判断是否应该对齐:
d ~ ( e 1 , e 2 ) = ∥ h e 1 − h e 2 ∥ L 1 (9) \tilde{d}\left(e_{1}, e_{2}\right)=\left\|\boldsymbol{h}_{e_{1}}-\boldsymbol{h}_{e_{2}}\right\|_{L_{1}} \tag {9} d~(e1,e2)=he1he2L1(9)
  其训练的目标函数为,其中 γ \gamma γ > 0,而 L \mathbb{L} L L ′ \mathbb{L}^{\prime} L分别代表种子实体对和负样本(在最近的结点中替换):
L ~ = ∑ ( i , j ) ∈ L ( i ′ , j ′ ) ∈ L ′ max ⁡ { 0 , d ~ ( i , j ) − d ~ ( i ′ , j ′ ) + γ } (10) \tilde{L}=\sum_{(i, j) \in \mathbb{L}\left(i^{\prime}, j^{\prime}\right) \in \mathbb{L}^{\prime}} \max \left\{0, \tilde{d}(i, j)-\tilde{d}\left(i^{\prime}, j^{\prime}\right)+\gamma\right\} \tag {10} L~=(i,j)L(i,j)Lmax{0,d~(i,j)d~(i,j)+γ}(10)
Overall training objective

  如果实体对齐预训练完成,预训练阶段已经收敛到稳定状态,其会给后续的部分提供充足的信息。因此后续的损失函数会修改为如下:
L = ∑ ( r , t ) ∈ L ∑ ( r ′ , t ′ ) ∈ C max ⁡ { 0 , d ( r , t ) − d ( r ′ , t ′ ) + γ } (11) L=\sum_{(r, t) \in \mathbb{L}} \sum_{\left(r^{\prime}, t^{\prime}\right) \in \mathbb{C}}\max \left\{0, d(r, t)-d\left(r^{\prime}, t^{\prime}\right)+\gamma\right\} \tag {11} L=(r,t)L(r,t)Cmax{0,d(r,t)d(r,t)+γ}(11)

d ( r , t ) = ∥ h r match − h t match ∥ L 1 (12) d(r, t)=\left\|\boldsymbol{h}_{r}^{\text {match}}-\boldsymbol{h}_{t}^{\text {match}}\right\|_{L_{1}} \tag {12} d(r,t)=hrmatchhtmatchL1(12)

  其中负样例集合 C = \mathbb{C}= C= { ( r ′ , t ′ ) ∣ ( r ′ = r ∧ t ′ ∈ C r ) ∨ ( t ′ = t ∧ r ′ ∈ C t ) } \left\{\left(r^{\prime}, t^{\prime}\right) \mid\left(r^{\prime}=r \wedge t^{\prime} \in \mathcal{C}_{r}\right) \vee\left(t^{\prime}=t \wedge r^{\prime} \in \mathcal{C}_{t}\right)\right\} {(r,t)(r=rtCr)(t=trCt)} 是由候选集合 C r \mathcal{C}_{r} Cr C t \mathcal{C}_{t} Ct组成(4.4中选择的)。注意到,我们的取样过程是不可微分的,所以其阻断了参数矩阵 W s \mathbf{W}_{s} Ws(公式2)的训练,为了训练其值,我们不直接取样,我们整合所有的邻接点的信息如下:
g i w = ( ∑ p ∈ N i α i p ⋅ σ ( h ^ p W g a t e ) ⋅ h ^ p ) W N (13) \boldsymbol{g}_{i}^{w}=\left(\sum_{p \in N_{i}} \alpha_{i p} \cdot \sigma\left(\hat{\boldsymbol{h}}_{p} \mathbf{W}_{g a t e}\right) \cdot \hat{\boldsymbol{h}}_{p}\right) \mathbf{W}_{N} \tag {13} giw=pNiαipσ(h^pWgate)h^pWN(13)
  其中 α i p \alpha_{i p} αip是一个聚合的权重,即式子2中的 p ( h j ∣ h i ) p\left(\boldsymbol{h}_{j} \mid \boldsymbol{h}_{i}\right) p(hjhi),既然训练参数矩阵 W s \mathbf{W}_{s} Ws的目的是让对齐的邻接点的表示尽可能相似,那么目标函数可以用下面的:
L w = ∑ ( r , t ) ∈ L ∥ g r w − g t w ∥ L 1 (14) L_{w}=\sum_{(r, t) \in \mathbb{L}}\left\|\boldsymbol{g}_{r}^{w}-\boldsymbol{g}_{t}^{w}\right\|_{L_{1}} \tag {14} Lw=(r,t)LgrwgtwL1(14)
  作者的模型在预训练以后就是端到端的训练,期间使用式子11作为目标函数,每50个周期就使用式子14调整参数 W s \mathbf{W}_{s} Ws

6. 实验分析

数据集:DBP15K和DWY100K

  其数据大致情况如下,同时作者为了验证其模型的性能,构造了一个稀疏的数据集S-DBP15K:

  作者将其他语言的文本通过谷歌翻译成英文,相当于在同一空间进行实体的表示学习。同时为了验证其提出模块重要性,作者对齐模型进行部分的删减,形成变形对照实验,具体的详细参数设置可以阅读论文。其实验结果如下:

  通过上述的实验,可以看到实验结果有很大的提升,而且在作者自己构造的稀疏数据集上面还依旧表现非常的好。同时作者论文后续的分析部分其实很不错,对于不同的部分选取的原因加以了非常清晰的解释,后续的Impact of neighborhood sampling strategiesImpact of neighborhood sampling sizeHow does the neighborhood matching module work这三个部分对其模型很具有解释性,同时其丰富的实验验证了其理论,推荐大家详细阅读,在此就不具体介绍了。

  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
近日,DeepMind 和谷歌联合进行了一项研究,该研究提出了一种执行相似性学习的新型强大模型——图匹配网络(GMN),性能优于 GNN 和 GCN 模型。该论文已被 ICML 2019 接收。 DeepMind 和谷歌的这项新研究聚焦检索和匹配图结构对象这一极具挑战性的问题,做出了两个重要贡献。 首先,研究者展示了如何训练图神经网络(GNN),使之生成可在向量空间中执行高效相似性推理的图嵌入。其次,研究者提出了新型图匹配网络模型(GMN),该模型以一对图作为输入,通过基于跨图注意力的新型匹配机制进行联合推理,从而计算它们之间的相似性分数。 研究者证明 GMN 模型在不同领域中的有效性,包括极具挑战性的基于控制流图的函数相似性搜索问题,这个问题在检索软件系统的漏洞中起着非常重要的作用。实验分析表明 GMN 模型不止能在相似性学习的环境下利用结构,还能超越针对这些问题手动精心设计的特定领域基线系统。研究主题:图相似性学习问题 图是编码关系结构的自然表征,常常出现在多个领域中。根据图结构数据定义的计算可以用在各种领域中,从计算生物学和化学的分子分析到自然语言理解中知识图或图结构解析的分析都可以。 近几年来,图神经网络(Graph Neural Network,GNN)已经成为可以有效学习结构数据表征、解决各种基于图的监督预测问题的模型了。这样的模型在迭代聚合局部结构信息的传播过程中设计并计算图节点表征,从而对图元素的排列(permutation)具有不变性。然后直接将这些节点表征用于节点分类,或者将它们合并到用于图分类的图向量中。而 GNN 在监督分类或回归以外的问题的相关研究相对较少。 DeepMind 的这篇论文研究的是图结构对象的相似性学习问题,这个问题在现实生活中有很多重要的应用,尤其是在图数据库中基于相似性的搜索。还有一个应用是涉及计算机安全的二元函数相似性搜索,给定的二元函数可能包含有已知漏洞的代码,我们要检查这个二元函数中是否有和已知易受攻击的函数相似的控制流图(control-flow-graph)。这有助于识别闭源软件中易受攻击的静态连结函式库,这是一个很常见的问题 (CVE, 2010; 2018),现在还没有很好的解决方法。图 1 展示了一个例子,在这个例子中用汇编语言注释的控制流图来表示二元函数。这种相似性学习问题极具挑战性,因为就算是图之间细微的差别也会造成语义上极大的不同,但结构不同的图语义上可能非常相似。因此,对这个问题而言,一个成功的模型应该(1)利用图结构;(2)能从图的结构和学习到的语义中推导出图的相似性。图 1:二元函数相似性学习问题。检查两个图是否相似需要推理图的结构和语义。左边两个控制流图对应使用不同编译器编译的相同函数(因此二者比较相似),但右侧图对应的是不同函数。 解决方案 为了解决图相似性学习问题,该论文研究了 GNN 在这种情况中的使用,探讨了如何用 GNN 将图嵌入到向量空间,并学习这种嵌入模型,从而使向量空间中相似的图靠近、不相似的图分开。这个模型的一个重要特性是它可以将每一个图独立地映射到一个嵌入向量,然后在向量空间中执行相似性计算。因此,可以预先计算并索引大型数据库中的图嵌入,这样就能用快速的最近邻搜索数据结构(如 k-d 树) 或局部敏感哈希算法 (Gionis et al., 1999) 执行高效的检索。 研究者进一步扩展 GNN,提出新型图匹配网络(Graph Matching Networks,GMN)来执行相似性学习。GMN 没有单独计算每个图的图表征,它通过跨图注意力机制计算相似性分数,来关联图之间的节点并识别差异。该模型依赖成对图计算图表征,因此它比嵌入模型更强大,并在准确率和计算之间做出了很好的权衡。 研究者在三个任务上评估了 GMN 和基线模型:仅捕获结构相似性的合成图编辑距离学习任务(synthetic graph edit-distance learning tas),以及两个现实世界任务——二元函数相似性搜索和网格检索,这两项任务都需要推理结构相似性和语义相似性。在所有任务中,GMN 都比基线和结构不可知(structure agnostic)模型的性能更好。在更详细的模型简化测试中,研究者发现 GMN 始终优于图嵌入模型和 Siamese 网络。 该研究的贡献如下: 展示了如何用 GNN 产生用于相似性学习的图嵌入; 提出了新型图匹配网络(GMN),该网络基于跨图注意力匹配来计算相似性; 实验证明,该研究提出的图相似性学习模型 GMN 在多个应用中都有良好的表现,比结构不可知模型和现有的手动建立的基线模型都要好。 深度图相似性学习 给定两个图 G1 = (V1, E1) 和 G2 = (V2, E2),我们需要一个可以计算两图之间相似性分数 s(G1, G2) 的模型。每个图 G = (V, E) 被表示为节点 V 和边 E 的集合,每个节点 i∈V 都可以和特征向量 x_i 相关联,每条边 (i, j) ∈ E 都可以和特征向量 x_ij 关联起来。这些特征可以表示节点类型、边的方向等。如果一个节点或者一条边不能关联任何特征,那么我们可以将对应向量设置成值为 1 的常量。研究者提出了两个图相似性学习模型:一个是基于标准 GNN 的学习图嵌入的模型;另一个是更为崭新也更加强大的 GMN。图 2 展示了这两个模型:图嵌入模型 图嵌入模型可以将每一个图都嵌入到向量中,然后用向量空间中的相似性矩阵衡量图之间的相似性。GNN 嵌入模型包括三个部分:编码器、传播层和聚合器。 图匹配网络 图匹配网络以一对图作为输入,计算它们之间的相似性分数。和嵌入模型相比,图匹配模型联合成对图计算相似性分数,而不是先将每个图独立地映射到向量上。因此,图匹配模型可能比嵌入模型更加强大,但它需要额外的计算效率。 图匹配网络改变了每个传播层中的节点更新模块,这样不仅可以考虑到每个图的边上的聚合信息,还可以考虑到衡量一个图中的一个节点和其他图中的一或多个节点匹配近日,DeepMind 和谷歌联合进行了一项研究,该研究提出了一种执行相似性学习的新型强大模型——图匹配网络(GMN),性能优于 GNN 和 GCN 模型。该论文已被 ICML 2019 接收。 程度的跨图匹配向量:以调整图的表征,在它们不匹配时放大它们之间的差异。 实验 研究者在三个任务上评估了图相似性学习(Graph Similarity Learning,GSL)框架、图嵌入模型(GNN)以及图匹配网络(GMN)的性能,并将这些模型与其他方法进行了对比。总体上,实验结果表明在图相似性学习任务上,GMN 表现优异,而且始终优于其他方法。 学习图编辑距离(GED) 图 G1 和 G2 之间的图编辑距离即将 G1 变换为 G2 所需的最小编辑操作。通常这些编辑操作包括添加/移除/替换节点和边。图编辑距离是衡量图之间相似性的自然指标,在图相似性搜索中有很多应用。 从下表 1 中可以看出,通过学习特定分布的图,GSL 模型的性能优于一般的基线模型,而 GMN 的性能持续优于图嵌入模型(GNN)。基于控制流图的二元函数相似性搜索 二元函数相似性搜索是计算机安全领域中的重要问题。当我们无法获取源代码时,可以通过二元函数执行分析和搜索,例如在处理商业或嵌入式软件或可疑的可执行程序时。 下图 4 展示了具备不同传播步和不同数据设置的不同模型在二元函数相似性搜索任务上的性能。从图中,我们可以看到: 图嵌入模型和图匹配模型的性能随着传播步的增加而持续提升; 在传播步足够的情况下,图嵌入模型持续优于基线模型; 图匹配模型在所有设置和传播步的情况下都优于图嵌入模型。研究者检测了GMN 模型中不同组件的效果,并将 GMN 模型与图卷积网络(GCN)、图神经网络(GNN)和 GNN/GCN 嵌入模型的 Siamese 版本进行对比。 下表 2 展示了实验结果,表明: GNN 嵌入模型是具备竞争力的模型(比 GCN 模型强大); 使用 Siamese 网络架构基于图表征学习相似性要比使用预先指定的相似性指标(Euclidean、Hamming 等)好; GMN 优于Siamese 模型,这表明在计算过程早期进行跨图信息交流是非常重要的。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值