论文笔记012-024

论文简记

1. 《Coordinated Reasoning for Cross-Lingual Knowledge Graph Alignment》-012

  • 简介

题目:《Coordinated Reasoning for Cross-Lingual Knowledge Graph Alignment》

来源:AAAI-2020

链接:论文链接

代码:[Code和Dataset]

  • 总结

  现有的实体对齐方法主要在编码知识图上选择不同,但他们通常使用类似的解码方法,独立选择每个源实体的局部最优匹配。这个解码方法不仅可能导致“多对一”问题,而且可能也忽略了这项任务的协调性,即各不相同对齐决策可能与其他决策高度相关。本文介绍了两种协同推理方法方法,即易硬解码策略和联合实体对齐算法。具体来说,容易-硬策略首先从对齐的结果中选取最可信的实体对,然后将其和种子对合并作为下一轮的训练集。此外,为了解决多对一问题,我们提出联合预测实体对齐,使一对一这个约束可以自然地合并到对齐预测中。实验结果表明,该模型得到了较好的验证,达到最先进的性能,而且我们的推理方法还可以显著改善现有的基线。

2. 《Non-translational Alignment for Multi-relational Networks》-013

  • 简介

题目:《Coordinated Reasoning for Cross-Lingual Knowledge Graph Alignment》

来源:IJCAI-2018

链接:论文链接

代码:[Code和Dataset]

  • 总结

  基于概率模型进行嵌入学习,学习实体表示后和传统方法一样,计算相似度进行对齐预测。

3. 《Multilingual Knowledge Graph Embeddings for Cross-lingual Knowledge Alignment》-014

  • 简介

来源:IJCAI-2017

链接:论文链接

代码:[Code和Dataset]

  • 总结

  其在方法MTransE基础上进行变形,提出了几种变形的损失函数计算的方法。

4. 《Semi-Supervised Entity Alignment via Knowledge Graph Embedding with Awareness of Degree Difference》-015

  • 简介

来源:WWW-2019

链接:论文链接

代码:[Code和Dataset]

  • 总结 🔴⭐

  其方法在TransE的方法上面引入了半监督方法对抗网络两个技术点。

  首先是在提出了Degree-Aware Knowledge Graph Embedding的嵌入学习方法,其基于对抗网络——其中度感知嵌入学习网络相当于一个生成器,而作者设置了两个鉴别器(high-normal degree和low-normal degree)生成器就是去学习实体嵌入从而让鉴别器无法分辨为止,主要是解决实体度对实体嵌入学习的影响

  同时作者引入了半监督的训练,通过分析对转换矩阵进行分析发现, θ e i 1 → M 1 θ e i 1 → M 2 M 1 θ e i 1 \theta_{e_{i}}^{1} \rightarrow \mathrm{M}^{1} \theta_{e_{i}}^{1} \rightarrow \mathrm{M}^{2} \mathrm{M}^{1} \theta_{e_{i}}^{1} θei1M1θei1M2M1θei1 θ e j 2 → M 2 θ e j 2 → M 1 M 2 θ e j 2 \theta_{e_{j}}^{2} \rightarrow \mathrm{M}^{2} \theta_{e_{j}}^{2} \rightarrow \mathrm{M}^{1} \mathrm{M}^{2} \theta_{e_{j}}^{2} θej2M2θej2M1M2θej2 分别表示 G 1 G_1 G1中的实体 θ e i 1 \theta_{e_{i}}^{1} θei1通过转换矩阵 M 1 M_1 M1转换为 G 2 G_2 G2空间中的表示,然后再将其转换到原先 G 1 G_1 G1空间中,这个时候的表示 M 1 M 2 θ e j 2 \mathrm{M}^{1} \mathrm{M}^{2} \theta_{e_{j}}^{2} M1M2θej2理论上应该和 θ e i 1 \theta_{e_{i}}^{1} θei1一样,但是实际中两个点的位置应该相近。通过这个原理就可将未标签的数据加入到损失函数中,进行半监督训练,损失函数如下:
L S E A ( M 1 , M 2 ) = α 1 + ∥ M 2 M 1 θ e i 1 − θ e i 1 ∥ 1 + ∥ M 1 M 2 θ e j 2 − θ e j 2 ∥ 1 + α 2 ∑ e i ∈ E 1 U ∥ M 2 M 1 θ e i 1 − θ e i 1 ∥ 1 + α 2 ∑ e j ∈ E 2 U ∥ M 1 M 2 θ e j 2 − θ e j 2 ∥ 1 L_{S E A}\left(\mathrm{M}^{1}, \mathrm{M}^{2}\right)=\alpha_{1} +\left\|\mathrm{M}^{2} \mathrm{M}^{1} \theta_{e_{i}}^{1}-\theta_{e_{i}}^{1}\right\|_{1}+\left\|\mathrm{M}^{1} \mathrm{M}^{2} \theta_{e_{j}}^{2}-\theta_{e_{j}}^{2}\right\|_{1} \\ +\alpha_{2} \sum_{e_{i} \in E_{1}^{U}}\left\|\mathrm{M}^{2} \mathrm{M}^{1} \theta_{e_{i}}^{1}-\theta_{e_{i}}^{1}\right\|_{1}+\alpha_{2} \sum_{e_{j} \in E_{2}^{U}}\left\|\mathrm{M}^{1} \mathrm{M}^{2} \theta_{e_{j}}^{2}-\theta_{e_{j}}^{2}\right\|_{1} LSEA(M1,M2)=α1+M2M1θei1θei11+M1M2θej2θej21+α2eiE1UM2M1θei1θei11+α2ejE2UM1M2θej2θej21

  本文采用的数据集与以往不太一样,WK13具体如下:

  结果比较如下,其提升效果还是非常明显的:

5. 《Improving Cross-lingual Entity Alignment via Optimal Transport》-016

  • 简介

来源:IJCAI-2019

链接:论文链接

代码:[Code和Dataset]

  • 总结

  和上面一篇文章类似,基于TransE模型进行变型,采用了四个部分当做损失函数进行优化:the loss for knowledge graph embeddings、the entity-level alignment loss、the group-level alignment loss、the regularizer

6. 《Semi-supervised Entity Alignment via Joint Knowledge Embedding Model and Cross-graph Model》-017

  • 简介

来源:EMNLP-2019

链接:论文链接

代码:Code和Dataset

  • 总结

  本文整合Cross-graph ModelKnowledge Embedding Model两个模块进行实体对齐。

  1. Cross-graph Model

  该模块主要是利用图的结构信息以及对齐的种子对信息,采用GAT模型缓解一些不重要邻近结点对实体嵌入的影响,其迭代中使用了未对齐的实体,所以可以说是半监督学习。其迭代方程以及损失函数如下:
H ( l + 1 ) = σ ( A ( l ) H ( l ) W ( l ) ) \mathbf{H}^{(l+1)}=\sigma\left(\mathbf{A}^{(l)} \mathbf{H}^{(l)} \mathbf{W}^{(l)}\right) H(l+1)=σ(A(l)H(l)W(l))

O C = ∑ ( e i , e j ) ∈ S ∑ ( e i ′ , e j ′ ) ∈ S ′ [ dist ⁡ ( e i , e j ) + γ 1 − dist ⁡ ( e i ′ , e j ′ ) ] + O_{C}=\sum_{\left(e_{i}, e_{j}\right) \in S} \sum_{\left(e_{i}^{\prime}, e_{j}^{\prime}\right) \in S^{\prime}}\left[\operatorname{dist}\left(e_{i}, e_{j}\right)+\gamma_{1}-\operatorname{dist}\left(e_{i}^{\prime}, e_{j}^{\prime}\right)\right]_{+} OC=(ei,ej)S(ei,ej)S[dist(ei,ej)+γ1dist(ei,ej)]+

  1. Knowledge Embedding Model

  该模块是继承了TransE模型思路,其主要是学习图中的关系,使实体之间更具区分性,实体之间更具解释性。其损失函数如下:
O K = ∑ ( e h , r , e t ) ∈ T ∑ ( e h ′ , r ′ , e t ′ ) ∈ T ′ [ f ( e h , r , e t ) + γ 2 − f ( e h ′ , r ′ , e t ′ ) ] + O_{K}=\sum_{(e_{h}, r, e_{t}) \in T} \sum_{(e_{h}^{\prime}, r^{\prime}, e_{t}^{\prime}) \in T^{\prime}}[f(e_{h}, r, e_{t})+\gamma_{2}-f(e_{h}^{\prime}, r^{\prime}, e_{t}^{\prime})]_{+} OK=(eh,r,et)T(eh,r,et)T[f(eh,r,et)+γ2f(eh,r,et)]+

  其整体损失函数为: O = O C + O K O=O_{C}+O_{K} O=OC+OK。其评级数据集以及结果如下:

7. 《Jointly Learning Entity and Relation Representations for Entity Alignment》-018

  • 简介

来源:EMNLP-2019

链接:论文链接

代码:[Code和Dataset](https://github.com/StephanieWyt/HGCN-JE-JR)

  本文作者是针对现有的大多方法很少基于有用的关系协助实体对齐提出来的,其联合实体嵌入与关系表示进行实体对齐。

  作者先对实体进行实体嵌入学习,使用带有门机制的GCN进行学习训练,待其稳定后再去学习关系表示,这里的关系表示是无监督学习,也可以加入关系对齐的任务进行考验,最后一部分就是联合实体表示和关系表示对实体进行实体对齐学习,然后再反向传播去修改GCN模型的参数进行优化。

  实验数据和结果如下,相比来说其效果还是非常明显的:

8. 《Modeling Multi-mapping Relations for Precise Cross-lingual Entity Alignment》-019

  • 简介

来源:EMNLP-2019

链接:论文链接

代码:[Code和Dataset]

  本文主要针对TransE系列模型无法很好学习多关系缺点提出的,作者提出了一种新的联合嵌入学习方法:针对KG Embedding作者分为两部分进行学习——1)普通的TransE的嵌入学习DistMA ,主要针对对称的关系类型,见公式(1); 2)考虑的实体头尾区别的嵌入学习ComplEx,针对不对称关系类型(详见文章Complex Embeddings for Simple Link Prediction),见公式(2);然后三元组表示由两者一起来表示,见公式(3)。
E 1 ( h , r , t ) = ⟨ v ⃗ h , v ⃗ r ⟩ + ⟨ v ⃗ r , v ⃗ t ⟩ + ⟨ v ⃗ h , v ⃗ t ⟩ (1) E_{1}(h, r, t)=\left\langle\vec{v}_{h}, \vec{v}_{r}\right\rangle+\left\langle\vec{v}_{r}, \vec{v}_{t}\right\rangle+\left\langle\vec{v}_{h}, \vec{v}_{t}\right\rangle \tag{1} E1(h,r,t)=v h,v r+v r,v t+v h,v t(1)

E 2 ( h , r , t ) = ⟨ Re ⁡ ( w ⃗ h ) , Re ⁡ ( w ⃗ r ) , Re ⁡ ( w ⃗ t ) ⟩ + ⟨ Re ⁡ ( w ⃗ h ) , Im ⁡ ( w ⃗ r ) , Im ⁡ ( w ⃗ t ) ⟩ + ⟨ Im ⁡ ( w ⃗ h ) , Re ⁡ ( w ⃗ r ) , Im ⁡ ( w ⃗ t ) ⟩ − ⟨ Im ⁡ ( w ⃗ h ) , Im ⁡ ( w ⃗ r ) , Re ⁡ ( w ⃗ t ) ⟩ (2) \begin{aligned} E_{2}(h, r, t)=&\left\langle\operatorname{Re}\left(\vec{w}_{h}\right), \operatorname{Re}\left(\vec{w}_{r}\right), \operatorname{Re}\left(\vec{w}_{t}\right)\right\rangle \\ &+\left\langle\operatorname{Re}\left(\vec{w}_{h}\right), \operatorname{Im}\left(\vec{w}_{r}\right), \operatorname{Im}\left(\vec{w}_{t}\right)\right\rangle \\ &+\left\langle\operatorname{Im}\left(\vec{w}_{h}\right), \operatorname{Re}\left(\vec{w}_{r}\right), \operatorname{Im}\left(\vec{w}_{t}\right)\right\rangle \\ &-\left\langle\operatorname{Im}\left(\vec{w}_{h}\right), \operatorname{Im}\left(\vec{w}_{r}\right), \operatorname{Re}\left(\vec{w}_{t}\right)\right\rangle \end{aligned} \tag {2} E2(h,r,t)=Re(w h),Re(w r),Re(w t)+Re(w h),Im(w r),Im(w t)+Im(w h),Re(w r),Im(w t)Im(w h),Im(w r),Re(w t)(2)

E ( h , r , t ) = E 1 ( h , r , t ) + E 2 ( h , r , t ) (3) E(h, r, t)=E_{1}(h, r, t)+E_{2}(h, r, t) \tag {3} E(h,r,t)=E1(h,r,t)+E2(h,r,t)(3)

  接下来就是作者对样本的负取样采取了最近相似的原则,增强了区分相近实体之间的区别;最后对齐阶段这里提出一种新的匹配方法,值得参考,其将 K G 1 − > K G 2 KG_1->KG_2 KG1>KG2 K G 2 − > K G 1 KG_2->KG_1 KG2>KG1的排序矩阵 M 12 / M 21 M_{12}/M_{21} M12/M21整合起来作为对齐的依据, M 12 = M 12 + M 21 T \mathrm{M}_{12}=\mathrm{M}_{12}+\mathrm{M}_{21}^{\mathrm{T}} M12=M12+M21T这样缓解了对齐查找过程中两个实体在不同图中匹配层度相差太大的情况。

9. 《Aligning Cross-lingual Entities with Multi-Aspect Information》-020

  • 简介

来源:EMNLP-2019

链接:论文链接

代码:Code和Dataset

  本文作者见结合最新的NLP任务的模型BERT来进行嵌入学习实体表示,首先作者使用GCN针对不同视角进行嵌入学习实体表示:结构信息、关系特征、属性特性。其模型结构如下,从三个角度分别取学习:

  然后作者通过对实体表示文本使用BERT进行学习,其中学习过程中采用一些技巧,减少计算的复杂度以及耗时,起学习到的实体表示作为实体的另一种实体表示。

  最后作者将其两部分学习到的表示进行整合,作为最终的实体表示,文中介绍了两种方式,其中表现最好的是采用如下方式结合:
H C = τ ⋅ H G ⊕ ( 1 − τ ) ⋅ H B H^{C}=\tau \cdot H^{G} \oplus(1-\tau) \cdot H^{B} HC=τHG(1τ)HB
  其训练集以及结果如下,整体来看,作者对以往各个方向的嵌入学习进行一次融合,考虑到已有研究的所有角度,采用角度进行嵌入学习很显然会提升实体表示的准确性,实验结果也是如期望所示。

10. 《Collective Entity Alignment via Adaptive Features》-021

  • 简介

来源:ICDE-2020

链接:论文链接

代码:Code和Dataset

  在生成实体对齐结果时,目前的解决方案独立地对待实体,并没有考虑到实体之间的相互依赖性。(可以理解为:在源实体与目标实体进行匹配时,如果存在目标实体和另一个具有较高置信度的实体,则目标实体不太可能与源实体匹配,应该选择另一个实体为待对齐的实体对。 对此类集合信号进行充分建模会减少失配并生成更高的对准精度。)
  本文使用三个具有代表性的特征,即结构、语义和字符串标识。为了进行集体的实体对齐决策,我们将EA定义为经典的稳定匹配问题,并通过递延接受算法进一步有效地解决了该问题。

  • 1.1 语义信息

  利用平均词嵌入捕捉语义特征;所有实体的名称的嵌入可以被定义为一个矩阵N,利用cosine相似度捕捉实体间的近似程度,语义相似度矩阵表示为Mn。

  • 1.2 字符串信息

  利用编辑距离方法来度量两个序列之间的差异性,生成一个字符串相似度矩阵Ml。

  • 1.3 编辑距离

  针对二个字符串(例如英文字)的差异程度的量化量测,量测方式是看至少需要多少次的处理才能将一个字符串变成另一个字符串。(这个部分也是改论文的提升性能的地方)

  • 2.1 普通匹配方法

  利用相同的权重将上面的三个矩阵融合为一个矩阵M。对齐方法为:给定一个源实体u,遍历矩阵中源实体对应的每一行元素,降序排序,最上面的就是对其的目标数据。

  • 2.2 考虑依赖关系的匹配方法(稳定的匹配方法)

  对于两个集合中有同样大小的成员,每一个都提供了对立集合中成员的排名,两个集合中存在一个映射,没有任何一对来自另一边的成员可以被匹配到对方。集合中的实体对叫做稳定匹配。(这个部分也是改论文的提升性能的地方)。

  观察下面的结果可以看出其效果提升还是大的,通过分析其1.3和2.2对方法影响较大。

11. 《Global Structure and Local Semantics-Preserved Embeddings for Entity Alignment》-024

  • 简介

来源:IJCAI-2020

链接:论文链接

代码:[Code和Dataset]

  以往都是通过实体的向量表示来对齐实体,主要有两类实体向量表示方法:
1)基于翻译模型的实体嵌入方法,利用局部语义信息来表示实体;
2)基于图神经网络的方法,利用全局结构信息来表示实体,这种全局信息集成了中心实体所有邻居的特征,拥有更强的综合性和可靠性,因为不容易丢失信息和不同知识图谱之间的模式异构性。
  下图中的两个实体New York(state)-纽约州和New York(city)-纽约城是两个不同的实体,实体对齐的过程只依靠局部语义信息或是全局结构信息是无法进行区分的,因为他们的邻居是完全相同的。值得注意的是,图中红字标识出的关系hasRiver和adjoin提供更细粒度的信息,如果能够同时考虑结构信息和局部语义信息考虑到实体的嵌入表示之中,这两个实体的嵌入向量就会出现差异。

  基于上述的分析作者提出了相应的模型,整体结构划分为两部分,全局结构保留嵌入部分和基于语义的局部细化部分。首先通过映射已对齐的种子集将两个知识图谱合并为一个知识图谱,然后学习实体表示,通过相似性度量找到新的可对齐实体对。

  首先,利用GCN来编码结构信息,然后,通过修改过的基于翻译的模型来得到局部语义。都以端到端的方式进行学习。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值