数学建模常见的一些方法【05相关系数】

数学建模常见的一些方法

1. 相关系数

  • 皮尔逊 pearson相关系数和斯皮尔曼spearman等级相关系数。它们可用来衡量两个变量之间的相关性的大小,根据数据满足的不同条件,我们要选择不同的相关系数进行计算和分析(建模论文中最容易用错的方法)。

1.1 总体和样本

总体 ——所要考察对象的全部个体叫做总体.
我们总是希望得到总体数据的一些特征(例如均值方差等)

样本 ——从总体中所抽取的一部分个体叫做总体的一个样本.

  计算这些抽取的样本的统计量来估计总体的统计量:
  例如使用样本均值样本标准差来估计总体的均值(平均水平)和总体的标准差(偏离程度)。
例子:
  我国10年进行一次的人口普查得到的数据就是总体数据。
  大家自己在QQ群发问卷叫同学帮忙填写得到的数据就是样本数据。

1.2 总体皮尔逊Pearson相关系数

在这里插入图片描述
在这里插入图片描述

1.3 样本皮尔逊Pearson相关系数

在这里插入图片描述

1.4 相关性可视化

在这里插入图片描述

1.5 关于皮尔逊 相关系数的一些理解误区

借鉴明羊羊链接

在这里插入图片描述


这里的相关系数只是用来衡量两个变量线性相关程度的指标
换句话说,必须先确认这两个变量是线性相关的,然后这个相关系数才能判断相关程度如何。


注意:
  如果两个变量本身就是线性的关系,那么皮尔逊相关系数绝对值大的就是相关性强,小的就是相关性弱;
  在不确定两个变量是什么关系的情况下,即使算出皮尔逊相关系数,发现很大,也不能说明那两个变量线性相关,甚至不能说他们相关,我们一定要画出散点图来看才行。

1.6 对相关系数大小的解释

在这里插入图片描述

1.7 描述性统计

Matlab中基本统计量的函数(一般用标粗的)

函数名功能
min数组的最小元素
mink计算数组的 k 个最小元素
max数组的最大元素
maxk计算数组的 k 个最大元素
bounds最小元素和最大元素
topkrows按排序顺序的前若干行
mean数组的均值
median数组的中位数值
mode数组的众数
skewness数组的偏度
kurtosis数组的峰度
std标准差
var方差

代码演示

MIN = min(Test); % 每一列的最小值
MAX = max(Test); % 每一列的最大值
MEAN = mean(Test); % 每一列的均值
MEDIAN = median(Test); %每一列的中位数
SKEWNESS = skewness(Test); %每一列的偏度
KURTOSIS = kurtosis(Test); %每一列的峰度
STD = std(Test); % 每一列的标准差
RESULT = [MIN;MAX;MEAN;MEDIAN;SKEWNESS;KURTOSIS;STD]
%将这些统计量放到一个矩阵中表示
RESULT =

   1.0e+03 *

    0.1350    0.0160    1.4500    0.0078    0.0520    0.0005
    0.1710    0.0650    3.2720    0.0150    0.2050    0.0175
    0.1560    0.0468    2.3332    0.0108    0.1668    0.0095
    0.1570    0.0470    2.3910    0.0107    0.1670    0.0096
   -0.0003   -0.0004   -0.0003    0.0007   -0.0008   -0.0002
    0.0027    0.0094    0.0028    0.0033    0.0084    0.0028
    0.0074    0.0050    0.3504    0.0013    0.0168    0.0029

1.8 EXCEL的数据分析工具

在这里插入图片描述
标题栏:数据 – 数据分析
如果没有找到,链接:Excel数据分析功能在哪里?
在这里插入图片描述
在这里插入图片描述
得到结果:
在这里插入图片描述

1.9 皮尔逊相关系数的计算

  • R = corrcoef(A)
    返回 A 的相关系数的矩阵,其中 A 的列表示随机变量(指标),行表示观测值(样本)
  • R = corrcoef(A,B)
    返回两个随机变量A和B(两个向量)之间的系数。
  • [R,P] = corrcoef(Test)
    R返回的是相关系数表,P返回的是对应于每个相关系数的p值

1.10 对皮尔逊相关系数进行假设检验

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

代码演示

%% 假设检验部分
x = -4:0.1:4;
y = tpdf(x,28);  %求t分布的概率密度值 28是自由度  
figure(1)
plot(x,y,'-')
grid on  % 在画出的图上加上网格线
hold on  % 保留原来的图,以便继续在上面操作

% matlab可以求出临界值,函数如下
tinv(0.975,28)    %    2.0484

% 这个函数是累积密度函数cdf的反函数
plot([-2.048,-2.048],[0,tpdf(-2.048,28)],'r-')
plot([2.048,2.048],[0,tpdf(2.048,28)],'r-')

在这里插入图片描述

1.11 更好用的方法:p值判断法

在这里插入图片描述
代码演示

%% 计算p值
x = -4:0.1:4;
y = tpdf(x,28);
figure(2)
plot(x,y,'-')
grid on 
hold on

% 画线段的方法
plot([-3.055,-3.055],[0,tpdf(-3.055,28)],'r-')
plot([3.055,3.055],[0,tpdf(3.055,28)],'r-')
disp('该检验值对应的p值为:')
disp((1-tcdf(3.055,28))*2)  %双侧检验的p值要乘以2

%% 计算各列之间的相关系数以及p值
[R,P] = corrcoef(Test)
% 在EXCEL表格中给数据右上角标上显著性符号吧
P < 0.01  % 标记3颗星的位置
(P < 0.05) .* (P > 0.01)  % 标记2颗星的位置
(P < 0.1) .* (P > 0.05) % % 标记1颗星的位置

1.12 皮尔逊相关系数假设检验的条件

在这里插入图片描述

1.13 正态分布JB检验(大样本 n>30)

在这里插入图片描述

1.14 偏度和峰度

在这里插入图片描述
代码演示

x = normrnd(2,3,100,1)  

% 生成100*1的随机向量,每个元素是均值为2,标准差为3的正态分布
skewness(x)  %偏度
kurtosis(x)  %峰度

1.15 MATLAB结果

MATLAB中进行JB检验的语法:[h,p] = jbtest(x,alpha)
当输出
h等于1时,表示拒绝原假设;
h等于0则代表不能拒绝原假设。
alpha就是显著性水平,一般取0.05,此时置信水平为1‐0.05=0.95
x就是我们要检验的随机变量,注意这里的x只能是向量。

%% 正态分布检验
% 检验第一列数据是否为正态分布
[h,p] = jbtest(Test(:,1),0.05)

% 用循环检验所有列的数据
n_c = size(Test,2); % number of column 数据的列数
H = zeros(1,6);
P = zeros(1,6);
for i = 1:n_c
	[h,p] = jbtest(Test(:,i),0.05);
	H(i)=h;
	P(i)=p;
end
disp(H)
disp(P)

1.16 小样本3≤n≤50:Shapiro-wilk检验

在这里插入图片描述

1.17 另一种常见的方法:Q-Q图

在这里插入图片描述

qqplot(Test(:,1))  % 第一列数据和正态分布的Q-Q图

在这里插入图片描述

1.18 斯皮尔曼spearman相关系数

斯皮尔曼相关系数被定义成等级之间的皮尔逊相关系数。
在这里插入图片描述
代码演示

% MATLAB求解皮尔逊相关系数
RX = [2 5 3 4 1]
RY = [1 4.5 3 4.5 2]
R = corrcoef(RX,RY)
>> %% MATLAB求解皮尔逊相关系数
RX = [2 5 3 4 1]
RY = [1 4.5 3 4.5 2]
R = corrcoef(RX,RY)

RX = 2     5     3     4     1

RY = 1.0000    4.5000    3.0000    4.5000    2.0000

R = 1.0000    0.8721
    0.8721    1.0000

1.19 MATLAB中计算斯皮尔曼相关系

在这里插入图片描述
代码演示

X = [3 8 4 7 2]' % 一定要是列向量,一撇'表示求转置
Y = [5 10 9 10 6]'
coeff = corr(X , Y , 'type' , 'Spearman')

代码过程

>> X = [3 8 4 7 2]' % 一定要是列向量,一撇'表示求转置
Y = [5 10 9 10 6]'
coeff = corr(X , Y , 'type' , 'Spearman')

X =
     3
     8
     4
     7
     2

Y =
     5
    10
     9
    10
     6

coeff = 0.8721  %这说明Matlab使用的是第二种计算方法

1.20 斯皮尔曼相关系数的假设检验

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.21 两个相关系数的比较

在这里插入图片描述
参考链接

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

slience_me

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值