import pandas as pd
import numpy as np
data_url ="http://lib.stat.cmu.edu/datasets/boston"
raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
data = np.hstack([raw_df.values[::2,:], raw_df.values[1::2,:2]])
target = raw_df.values[1::2,2]
官方做出的解释
FutureWarning: Function load_boston is deprecated; `load_boston` is deprecated in1.0and will be removed in1.2.
The Boston housing prices dataset has an ethical problem. You can refer to
the documentation of this function for further details.
The scikit-learn maintainers therefore strongly discourage the use of this
dataset unless the purpose of the code is to study and educate about
ethical issues in data science and machine learning.
In this special case, you can fetch the dataset from the original
source::import pandas as pd
import numpy as np
data_url ="http://lib.stat.cmu.edu/datasets/boston"
raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
data = np.hstack([raw_df.values[::2,:], raw_df.values[1::2,:2]])
target = raw_df.values[1::2,2]
Alternative datasets include the California housing dataset (i.e.:func:`~sklearn.datasets.fetch_california_housing`)and the Ames housing
dataset. You can load the datasets as follows::from sklearn.datasets import fetch_california_housing
housing = fetch_california_housing()for the California housing dataset and::from sklearn.datasets import fetch_openml
housing = fetch_openml(name="house_prices", as_frame=True)for the Ames housing dataset.
warnings.warn(msg, category=FutureWarning)