NLP课程实验——机器翻译

一、背景介绍

        机器翻译是指将一段文本从一种语言自动翻译到另一种语言。因为一段文本序列在不同语言中的长度不一定相同,所以我们使用机器翻译为例来介绍编码器—解码器和注意力机制的应用。

二、读取和预处理数据

        我们先定义一些特殊符号。其中“<pad>”(padding)符号用来添加在较短序列后,直到每个序列等长,而“<bos>”和“<eos>”符号分别表示序列的开始和结束。

        

import collections
import os
import io
import math
import torch
from torch import nn
import torch.nn.functional as F
import torchtext.vocab as Vocab
import torch.utils.data as Data

import sys
# sys.path.append("..")  # 将上级目录添加到系统路径中(当前注释掉)
import d2lzh_pytorch as d2l

# 定义特殊字符
PAD, BOS, EOS = '<pad>', '<bos>', '<eos>'

# 设置环境变量,指定使用的 GPU 设备
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

# 检测是否有可用的 GPU,如果有则使用 GPU,否则使用 CPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 打印 PyTorch 版本和当前使用的设备
print(torch.__version__, device)

        接着定义两个辅助函数对后面读取的数据进行预处理。

# 处理一个序列,将其所有词汇记录在 all_tokens 中,并在该序列后面添加 PAD 直到长度为 max_seq_len,最后保存在 all_seqs 中
def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len):
    # 将当前序列的所有词汇添加到 all_tokens 中
    all_tokens.extend(seq_tokens)
    # 在当前序列的末尾添加 EOS(句子结束符),然后添加 PAD 直到序列长度达到 max_seq_len
    seq_tokens += [EOS] + [PAD] * (max_seq_len - len(seq_tokens) - 1)
    # 将处理后的序列添加到 all_seqs 中
    all_seqs.append(seq_tokens)

# 使用所有的词汇来构造词典,并将所有序列中的词汇转换为词索引后构造 Tensor
def build_data(all_tokens, all_seqs):
    # 构建词典,使用 collections.Counter 统计词频,并添加特殊字符
    vocab = Vocab.Vocab(collections.Counter(all_tokens), specials=[PAD, BOS, EOS])
    # 将所有序列中的词汇转换为词索引
    indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs]
    # 返回词典和转换后的 Tensor
    return vocab, torch.tensor(indices)

         为了演示方便,我们在这里使用一个很小的法语—英语数据集。在这个数据集里,每一行是一对法语句子和它对应的英语句子,中间使用'\t'隔开。在读取数据时,我们在句末附上“<eos>”符号,并可能通过添加“<pad>”符号使每个序列的长度均为max_seq_len。我们为法语词和英语词分别创建词典。法语词的索引和英语词的索引相互独立。

def read_data(max_seq_len):
    # in 和 out 分别是 input 和 output 的缩写
    in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], []

    # 打开并读取文件内容
    with io.open('fr-en-small.txt') as f:
        lines = f.readlines()

    # 遍历每一行,处理输入和输出序列
    for line in lines:
        # 去掉每行末尾的换行符,并用制表符分隔成输入序列和输出序列
        in_seq, out_seq = line.rstrip().split('\t')
        # 将输入序列和输出序列分别按空格分割成词列表
        in_seq_tokens, out_seq_tokens = in_seq.split(' '), out_seq.split(' ')

        # 如果输入序列或输出序列加上 EOS 后长度大于 max_seq_len,则跳过此样本
        if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1:
            continue

        # 处理输入序列并添加到 in_tokens 和 in_seqs 列表中
        process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len)
        # 处理输出序列并添加到 out_tokens 和 out_seqs 列表中
        process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len)

    # 构建输入序列的词典和数据张量
    in_vocab, in_data = build_data(in_tokens, in_seqs)
    # 构建输出序列的词典和数据张量
    out_vocab, out_data = build_data(out_tokens, out_seqs)

    # 返回输入词典、输出词典以及包含输入输出数据的 TensorDataset
    return in_vocab, out_vocab, Data.TensorDataset(in_data, out_data)

         将序列的最大长度设成7,然后查看读取到的第一个样本。该样本分别包含法语词索引序列和英语词索引序列。

# 设置最大序列长度
max_seq_len = 7

# 读取数据并构建词典和数据集
in_vocab, out_vocab, dataset = read_data(max_seq_len)

# 打印数据集的第一个样本
print(dataset[0])

三、含注意力机制的编码器—解码器

        我们将使用含注意力机制的编码器—解码器来将一段简短的法语翻译成英语。下面我们来介绍模型的实现。

1.编码器

        在编码器中,我们将输入语言的词索引通过词嵌入层得到词的表征,然后输入到一个多层门控循环单元中。正如我们在6.5节(循环神经网络的简洁实现)中提到的,PyTorch的nn.GRU实例在前向计算后也会分别返回输出和最终时间步的多层隐藏状态。其中的输出指的是最后一层的隐藏层在各个时间步的隐藏状态,并不涉及输出层计算。注意力机制将这些输出作为键项和值项。

# 定义编码器类,继承自 nn.Module
class Encoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, drop_prob=0, **kwargs):
        # 调用父类的构造函数
        super(Encoder, self).__init__(**kwargs)
        # 定义词嵌入层
        self.embedding = nn.Embedding(vocab_size, embed_size)
        # 定义带有dropout的GRU层
        self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=drop_prob)

    def forward(self, inputs, state):
        # inputs 的形状是 (批量大小, 时间步数)
        # 将 inputs 转换为词嵌入表示,并将形状调整为 (时间步数, 批量大小, 词嵌入维度)
        embedding = self.embedding(inputs.long()).permute(1, 0, 2)  # (seq_len, batch, input_size)
        # 将嵌入表示输入到 GRU 中
        return self.rnn(embedding, state)

    def begin_state(self):
        # 初始状态为 None
        return None

         下面我们来创建一个批量大小为4、时间步数为7的小批量序列输入。设门控循环单元的隐藏层个数为2,隐藏单元个数为16。编码器对该输入执行前向计算后返回的输出形状为(时间步数, 批量大小, 隐藏单元个数)。门控循环单元在最终时间步的多层隐藏状态的形状为(隐藏层个数, 批量大小, 隐藏单元个数)。对于门控循环单元来说,state就是一个元素,即隐藏状态;如果使用长短期记忆,state是一个元组,包含两个元素即隐藏状态和记忆细胞。

# 创建一个 Encoder 实例
encoder = Encoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)

# 构造一个 (批量大小, 时间步数) 的输入张量,值全为 0
inputs = torch.zeros((4, 7))  # 假设批量大小为 4,序列长度为 7

# 调用 encoder 的 begin_state 方法获取初始状态
state = encoder.begin_state()

# 将输入和初始状态传递给 encoder,获取输出和更新后的状态
output, state = encoder(inputs, state)

# 打印输出和状态的形状
output.shape, state.shape  # 输出形状 (时间步数, 批量大小, 隐藏层维度),状态形状 (GRU层数, 批量大小, 隐藏层维度)

2.注意力机制 

        我们将实现注意力机制中定义的函数𝑎𝑎:将输入连结后通过含单隐藏层的多层感知机变换。其中隐藏层的输入是解码器的隐藏状态与编码器在所有时间步上隐藏状态的一一连结,且使用tanh函数作为激活函数。输出层的输出个数为1。两个Linear实例均不使用偏差。其中函数𝑎𝑎定义里向量𝑣𝑣的长度是一个超参数,即attention_size

import torch.nn as nn

def attention_model(input_size, attention_size):
    """
    定义一个简单的注意力模型。

    参数:
    input_size (int): 输入特征的维度。
    attention_size (int): 注意力机制的中间维度。

    返回:
    model (nn.Sequential): 注意力模型,由一个全连接层(无偏置)、Tanh 激活函数和另一个全连接层(无偏置)组成。
    """
    model = nn.Sequential(
        nn.Linear(input_size, attention_size, bias=False),  # 第一层,全连接层,将输入特征映射到 attention_size 维度
        nn.Tanh(),  # 激活函数,使用 Tanh 非线性激活
        nn.Linear(attention_size, 1, bias=False)  # 第二层,全连接层,将 attention_size 维度映射到标量
    )
    return model

        注意力机制的输入包括查询项、键项和值项。设编码器和解码器的隐藏单元个数相同。这里的查询项为解码器在上一时间步的隐藏状态,形状为(批量大小, 隐藏单元个数);键项和值项均为编码器在所有时间步的隐藏状态,形状为(时间步数, 批量大小, 隐藏单元个数)。注意力机制返回当前时间步的背景变量,形状为(批量大小, 隐藏单元个数)。

def attention_forward(model, enc_states, dec_state):
    """
    enc_states: (时间步数, 批量大小, 隐藏单元个数)
    dec_state: (批量大小, 隐藏单元个数)
    """
    # 将解码器隐藏状态广播到和编码器隐藏状态形状相同后进行连结
    dec_states = dec_state.unsqueeze(dim=0).expand_as(enc_states)
    enc_and_dec_states = torch.cat((enc_states, dec_states), dim=2)
    e = model(enc_and_dec_states)  # 形状为(时间步数, 批量大小, 1)
    alpha = F.softmax(e, dim=0)  # 在时间步维度做softmax运算
    return (alpha * enc_states).sum(dim=0)  # 返回背景变量

        在下面的例子中,编码器的时间步数为10,批量大小为4,编码器和解码器的隐藏单元个数均为8。注意力机制返回一个小批量的背景向量,每个背景向量的长度等于编码器的隐藏单元个数。因此输出的形状为(4, 8)。 

# 定义序列长度、批量大小和隐藏单元个数
seq_len, batch_size, num_hiddens = 10, 4, 8

# 创建注意力模型,输入特征维度为 2*num_hiddens(编码器和解码器隐藏状态拼接后的维度),
# 注意力机制的中间维度为 10
model = attention_model(2*num_hiddens, 10) 


# 创建编码器隐藏状态,初始化为全零张量,形状为 (时间步数, 批量大小, 隐藏单元个数)
enc_states = torch.zeros((seq_len, batch_size, num_hiddens))

# 创建解码器隐藏状态,初始化为全零张量,形状为 (批量大小, 隐藏单元个数)
dec_state = torch.zeros((batch_size, num_hiddens))

# 计算注意力前向传播,并获取输出的形状
attention_forward(model, enc_states, dec_state).shape

 

3.含注意力机制的解码器

        我们直接将编码器在最终时间步的隐藏状态作为解码器的初始隐藏状态。这要求编码器和解码器的循环神经网络使用相同的隐藏层个数和隐藏单元个数。

        在解码器的前向计算中,我们先通过刚刚介绍的注意力机制计算得到当前时间步的背景向量。由于解码器的输入来自输出语言的词索引,我们将输入通过词嵌入层得到表征,然后和背景向量在特征维连结。我们将连结后的结果与上一时间步的隐藏状态通过门控循环单元计算出当前时间步的输出与隐藏状态。最后,我们将输出通过全连接层变换为有关各个输出词的预测,形状为(批量大小, 输出词典大小)。

class Decoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 attention_size, drop_prob=0):
        super(Decoder, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.attention = attention_model(2*num_hiddens, attention_size)
        # GRU的输入包含attention输出的c和实际输入, 所以尺寸是 num_hiddens+embed_size
        self.rnn = nn.GRU(num_hiddens + embed_size, num_hiddens, 
                          num_layers, dropout=drop_prob)
        self.out = nn.Linear(num_hiddens, vocab_size)

    def forward(self, cur_input, state, enc_states):
        """
        cur_input shape: (batch, )
        state shape: (num_layers, batch, num_hiddens)
        """
        # 使用注意力机制计算背景向量
        c = attention_forward(self.attention, enc_states, state[-1])
        # 将嵌入后的输入和背景向量在特征维连结, (批量大小, num_hiddens+embed_size)
        input_and_c = torch.cat((self.embedding(cur_input), c), dim=1) 
        # 为输入和背景向量的连结增加时间步维,时间步个数为1
        output, state = self.rnn(input_and_c.unsqueeze(0), state)
        # 移除时间步维,输出形状为(批量大小, 输出词典大小)
        output = self.out(output).squeeze(dim=0)
        return output, state

    def begin_state(self, enc_state):
        # 直接将编码器最终时间步的隐藏状态作为解码器的初始隐藏状态
        return enc_state

四、训练模型 

        我们先实现batch_loss函数计算一个小批量的损失。解码器在最初时间步的输入是特殊字符BOS。之后,解码器在某时间步的输入为样本输出序列在上一时间步的词,即强制教学。此外,同10.3节(word2vec的实现)中的实现一样,我们在这里也使用掩码变量避免填充项对损失函数计算的影响。

def batch_loss(encoder, decoder, X, Y, loss):
    batch_size = X.shape[0]
    enc_state = encoder.begin_state()
    enc_outputs, enc_state = encoder(X, enc_state)
    # 初始化解码器的隐藏状态
    dec_state = decoder.begin_state(enc_state)
    # 解码器在最初时间步的输入是BOS
    dec_input = torch.tensor([out_vocab.stoi[BOS]] * batch_size)
    # 我们将使用掩码变量mask来忽略掉标签为填充项PAD的损失, 初始全1
    mask, num_not_pad_tokens = torch.ones(batch_size,), 0
    l = torch.tensor([0.0])
    for y in Y.permute(1,0): # Y shape: (batch, seq_len)
        dec_output, dec_state = decoder(dec_input, dec_state, enc_outputs)
        l = l + (mask * loss(dec_output, y)).sum()
        dec_input = y  # 使用强制教学
        num_not_pad_tokens += mask.sum().item()
        # EOS后面全是PAD. 下面一行保证一旦遇到EOS接下来的循环中mask就一直是0
        mask = mask * (y != out_vocab.stoi[EOS]).float()
    return l / num_not_pad_tokens

        在训练函数中,我们需要同时迭代编码器和解码器的模型参数。

def train(encoder, decoder, dataset, lr, batch_size, num_epochs):
    # 创建优化器,用于更新编码器和解码器的参数
    enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)
    dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)

    # 定义损失函数,使用交叉熵损失,reduction='none' 表示不对批量内的损失求平均
    loss = nn.CrossEntropyLoss(reduction='none')
    data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)
    
     # 训练循环,遍历每一个 epoch
    for epoch in range(num_epochs):
        l_sum = 0.0# 累计损失
        # 遍历数据加载器中的每一个批量
        for X, Y in data_iter:
            enc_optimizer.zero_grad()# 清零编码器的梯度
            dec_optimizer.zero_grad()# 清零解码器的梯度
            l = batch_loss(encoder, decoder, X, Y, loss)# 计算当前批量的损失
            l.backward()# 反向传播,计算梯度
            enc_optimizer.step()
            dec_optimizer.step()
            l_sum += l.item()
        # 每 10 个 epoch 打印一次当前的平均损失
        if (epoch + 1) % 10 == 0:
            print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_iter)))

         接下来,创建模型实例并设置超参数。然后,我们就可以训练模型了。

# 嵌入维度为64,隐藏层维度为64,GRU层数为2
embed_size, num_hiddens, num_layers = 64, 64, 2

# 注意力机制的中间维度为10,丢弃概率为0.5,学习率为0.01,批量大小为2,训练轮数为50
attention_size, drop_prob, lr, batch_size, num_epochs = 10, 0.5, 0.01, 2, 50

# 创建编码器对象,传入词汇表大小(len(in_vocab))、嵌入维度(embed_size)、隐藏层维度(num_hiddens)、层数(num_layers)和丢弃概率(drop_prob)
encoder = Encoder(len(in_vocab), embed_size, num_hiddens, num_layers,
                  drop_prob)

# 创建解码器对象,传入词汇表大小(len(out_vocab))、嵌入维度(embed_size)、隐藏层维度(num_hiddens)、层数(num_layers)、注意力机制的维度(attention_size)和丢弃概率(drop_prob)
decoder = Decoder(len(out_vocab), embed_size, num_hiddens, num_layers,
                  attention_size, drop_prob)

# 调用训练函数 train,传入编码器、解码器、数据集、学习率、批量大小和训练轮数,开始训练模型
train(encoder, decoder, dataset, lr, batch_size, num_epochs)

 

五、预测不定长的序列

这里我们实现最简单的贪婪搜索。

def translate(encoder, decoder, input_seq, max_seq_len):
    
    in_tokens = input_seq.split(' ')
    # 添加EOS标记,并用PAD填充直到达到最大序列长度
    in_tokens += [EOS] + [PAD] * (max_seq_len - len(in_tokens) - 1)
    # 将分词后的输入序列转换为张量,形状为 (1, max_seq_len)
    enc_input = torch.tensor([[in_vocab.stoi[tk] for tk in in_tokens]]) # batch=1
    
    enc_state = encoder.begin_state()
     # 将输入张量传入编码器,得到编码器的输出和更新后的隐藏状态
    enc_output, enc_state = encoder(enc_input, enc_state)
    # 初始化解码器的输入,起始标记BOS
    dec_input = torch.tensor([out_vocab.stoi[BOS]])
    # 初始化解码器的隐藏状态,使用编码器的最终隐藏状态进行初始化
    dec_state = decoder.begin_state(enc_state)
    
    output_tokens = []
    
      # 循环生成输出序列
    for _ in range(max_seq_len):
        # 将当前解码器输入、隐藏状态和编码器输出传入解码器,得到解码器的输出和更新后的隐藏状态
        dec_output, dec_state = decoder(dec_input, dec_state, enc_output)
        # 选择输出概率最大的词对应的索引
        pred = dec_output.argmax(dim=1)
        # 将索引转换为对应的词
        pred_token = out_vocab.itos[int(pred.item())]
        # 如果生成了EOS标记,结束翻译
        if pred_token == EOS:
            break
        else:
            # 否则,将生成的词添加到输出序列中,并将其作为下一时间步的解码器输入
            output_tokens.append(pred_token)
            dec_input = pred

    return output_tokens

        简单测试一下模型。输入法语句子“ils regardent.”,翻译后的英语句子应该是“they are watching.”。 

input_seq = 'ils regardent .'
translate(encoder, decoder, input_seq, max_seq_len)

 

六、评价翻译结果

        评价机器翻译结果通常使用BLEU(Bilingual Evaluation Understudy)[1]。对于模型预测序列中任意的子序列,BLEU考察这个子序列是否出现在标签序列中。

        具体来说,设词数为𝑛𝑛的子序列的精度为𝑝𝑛𝑝𝑛。它是预测序列与标签序列匹配词数为𝑛𝑛的子序列的数量与预测序列中词数为𝑛𝑛的子序列的数量之比。举个例子,假设标签序列为𝐴𝐴、𝐵𝐵、𝐶𝐶、𝐷𝐷、𝐸𝐸、𝐹𝐹,预测序列为𝐴𝐴、𝐵𝐵、𝐵𝐵、𝐶𝐶、𝐷𝐷,那么𝑝1=4/5,𝑝2=3/4,𝑝3=1/3,𝑝4=0𝑝1=4/5,𝑝2=3/4,𝑝3=1/3,𝑝4=0。设𝑙𝑒𝑛label𝑙𝑒𝑛label和𝑙𝑒𝑛pred𝑙𝑒𝑛pred分别为标签序列和预测序列的词数,那么,BLEU的定义为

        其中𝑘是我们希望匹配的子序列的最大词数。可以看到当预测序列和标签序列完全一致时,BLEU为1。

        因为匹配较长子序列比匹配较短子序列更难,BLEU对匹配较长子序列的精度赋予了更大权重。例如,当𝑝𝑛固定在0.5时,随着𝑛的增大,

        另外,模型预测较短序列往往会得到较高𝑝𝑛值。因此,上式中连乘项前面的系数是为了惩罚较短的输出而设的。举个例子,当𝑘=2时,假设标签序列为𝐴、𝐵、𝐶、𝐷、𝐸、𝐹,而预测序列为𝐴、𝐵。虽然𝑝1=𝑝2=1,但惩罚系数exp(1−6/2)≈0.14,因此BLEU也接近0.14。

下面来实现BLEU的计算。

def bleu(pred_tokens, label_tokens, k):

    len_pred, len_label = len(pred_tokens), len(label_tokens)
    
    # 如果预测序列长度小于参考序列长度,则设置平滑因子为exp(1 - len_label / len_pred),否则为1
    score = math.exp(min(0, 1 - len_label / len_pred))
    
    # 计算n-gram匹配的比例,并乘以权重系数
    for n in range(1, k + 1):
        num_matches, label_subs = 0, collections.defaultdict(int)
        
        # 创建参考序列的n-gram字典
        for i in range(len_label - n + 1):
            label_subs[''.join(label_tokens[i: i + n])] += 1
        
        # 遍历预测序列的n-gram,并计算匹配的数量
        for i in range(len_pred - n + 1):
            n_gram = ''.join(pred_tokens[i: i + n])
            if label_subs[n_gram] > 0:
                num_matches += 1
                label_subs[n_gram] -= 1
        
        # 计算n-gram的精确度,并乘以权重系数
        score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
    
    return score

接下来,定义一个辅助打印函数。

def score(input_seq, label_seq, k):
    pred_tokens = translate(encoder, decoder, input_seq, max_seq_len)
    label_tokens = label_seq.split(' ')
    print('bleu %.3f, predict: %s' % (bleu(pred_tokens, label_tokens, k),
                                      ' '.join(pred_tokens)))

 预测正确则分数为1。

score('ils regardent .', 'they are watching .', k=2)

score('ils sont canadienne .', 'they are canadian .', k=2)

 

七、小结

  • 可以将编码器—解码器和注意力机制应用于机器翻译中。
  • BLEU可以用来评价翻译结果。

 八、练习

  • 如果编码器和解码器的隐藏单元个数不同或层数不同,我们该如何改进解码器的隐藏状态初始化方法?

1.线性变换:
使用一个线性层将编码器的隐藏状态转换为解码器的隐藏状态。

2.重复或截断层:
如果编码器和解码器的层数不同,可以重复或截断编码器的隐藏状态。

3.注意力机制:
使用注意力机制来生成适合解码器的初始隐藏状态。

  • 在训练中,将强制教学替换为使用解码器在上一时间步的输出作为解码器在当前时间步的输入。结果有什么变化吗?

1.训练收敛速度变慢:
    使用强制教学时,解码器在每个时间步都会使用真实的目标序列作为输入,这可以加速模型的训练过程,减少误差传播,帮助模型更快收敛。
    不使用强制教学时,解码器在每个时间步使用的是它自己在上一时间步的预测输出,这会导致误差累积,从而可能需要更多的训练轮数才能达到相同的性能。

2.训练过程中不稳定:
    在不使用强制教学的情况下,如果解码器在早期时间步预测不准确,这些错误会传播到后续时间步,导致整个序列生成的误差增大,训练过程可能会变得不稳定。

3.测试和训练一致性:
    不使用强制教学时,解码器在训练时的输入方式与测试时的输入方式一致(都使用前一步的输出作为当前步的输入),这可以减少训练和测试之间的差异,有助于提升模型在实际使用中的表现。

4.可能的泛化能力提升:
    在没有强制教学的情况下,模型被迫学会处理它自己的预测输出作为输入,这可能会提升模型的泛化能力,使得它在面对新的、未见过的输入序列时表现更好。

  • 试着使用更大的翻译数据集来训练模型,例如 WMT [2] 和 Tatoeba Project [3]。 

 

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import collections

# 定义特殊标记:句子开头(BOS)、句子结尾(EOS)和填充(PAD)
BOS, EOS, PAD = '<bos>', '<eos>', '<pad>'

# 构建词汇表函数:从文件中读取数据并生成词汇表
def build_vocab(file):
    counter = collections.Counter()
    with open(file, 'r') as f:
        for line in f:
            counter.update(line.strip().split())
    # 将词汇表中的词分配唯一的索引
    vocab = {token: i for i, (token, _) in enumerate(counter.items(), 3)}
    # 为特殊标记分配固定索引
    vocab[BOS] = 0
    vocab[EOS] = 1
    vocab[PAD] = 2
    return vocab

# 构建输入和输出词汇表
in_vocab = build_vocab('train.en')
out_vocab = build_vocab('train.fr')

# 确保词汇表对象具有 'stoi'(词到索引)和 'itos'(索引到词)属性
in_vocab = collections.namedtuple('Vocab', ['stoi', 'itos'])(in_vocab, {i: tok for tok, i in in_vocab.items()})
out_vocab = collections.namedtuple('Vocab', ['stoi', 'itos'])(out_vocab, {i: tok for tok, i in out_vocab.items()})

# 定义编码器类
class Encoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, drop_prob=0):
        super(Encoder, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=drop_prob)

    def forward(self, inputs, state):
        # 将输入转换为词嵌入,并调整维度顺序以适应RNN
        embedding = self.embedding(inputs.long()).permute(1, 0, 2)
        return self.rnn(embedding, state)

    def begin_state(self, batch_size, device):
        # 初始化RNN的隐藏状态
        return torch.zeros(self.rnn.num_layers, batch_size, self.rnn.hidden_size, device=device)

# 定义解码器类
class Decoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, attention_size, drop_prob=0):
        super(Decoder, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.attention = attention_model(2 * num_hiddens, attention_size)
        self.rnn = nn.GRU(embed_size + num_hiddens, num_hiddens, num_layers, dropout=drop_prob)
        self.out = nn.Linear(num_hiddens, vocab_size)
        self.enc_to_dec_hidden = nn.Linear(num_hiddens, num_hiddens * num_layers)

    def forward(self, X, state, enc_states):
        X = self.embedding(X).unsqueeze(0)  # (1, batch_size, embed_size)
        # 计算注意力权重并应用
        context = attention_forward(self.attention, enc_states, state[-1])
        X_and_context = torch.cat((X, context.unsqueeze(0)), dim=-1)
        output, state = self.rnn(X_and_context, state)
        output = self.out(output).squeeze(0)
        return output, state

    def begin_state(self, enc_state):
        # 将编码器状态转换为解码器初始状态
        transformed_enc_state = self.enc_to_dec_hidden(enc_state[-1])
        dec_state = transformed_enc_state.view(self.rnn.num_layers, -1, self.rnn.hidden_size)
        return dec_state

# 定义注意力模型
def attention_model(input_size, attention_size):
    model = nn.Sequential(nn.Linear(input_size, attention_size, bias=False),
                          nn.Tanh(),
                          nn.Linear(attention_size, 1, bias=False))
    return model

# 定义注意力机制前向传播
def attention_forward(model, enc_states, dec_state):
    dec_states = dec_state.unsqueeze(dim=0).expand_as(enc_states)
    enc_and_dec_states = torch.cat((enc_states, dec_states), dim=2)
    e = model(enc_and_dec_states)  # (时间步数, 批量大小, 1)
    alpha = F.softmax(e, dim=0)  # 在时间步维度做softmax运算
    return (alpha * enc_states).sum(dim=0)  # 返回背景变量

# 自定义数据集类
class TranslationDataset(Dataset):
    def __init__(self, src_file, tgt_file, src_vocab, tgt_vocab, max_seq_len):
        self.src_data = []
        self.tgt_data = []
        # 读取源文件和目标文件并进行预处理
        with open(src_file, 'r') as f_src, open(tgt_file, 'r') as f_tgt:
            for src_line, tgt_line in zip(f_src, f_tgt):
                src_tokens = src_line.strip().split()
                tgt_tokens = tgt_line.strip().split()
                if len(src_tokens) <= max_seq_len and len(tgt_tokens) <= max_seq_len:
                    self.src_data.append([src_vocab.stoi[token] for token in src_tokens] + [src_vocab.stoi[EOS]])
                    self.tgt_data.append([tgt_vocab.stoi[token] for token in tgt_tokens] + [tgt_vocab.stoi[EOS]])
        
        print(f'Read {len(self.src_data)} sentence pairs from {src_file} and {tgt_file}')
        
        # 填充句子到固定长度
        self.src_data = [seq + [src_vocab.stoi[PAD]] * (max_seq_len - len(seq)) for seq in self.src_data]
        self.tgt_data = [seq + [tgt_vocab.stoi[PAD]] * (max_seq_len - len(seq)) for seq in self.tgt_data]

    def __len__(self):
        return len(self.src_data)

    def __getitem__(self, idx):
        return torch.tensor(self.src_data[idx]), torch.tensor(self.tgt_data[idx])

# 定义训练函数
def train(encoder, decoder, dataset, lr, batch_size, num_epochs, device):
    enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)
    dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss(reduction='none')
    data_iter = DataLoader(dataset, batch_size, shuffle=True)
    
    encoder.to(device)
    decoder.to(device)
    
    for epoch in range(num_epochs):
        l_sum = 0.0
        for X, Y in data_iter:
            X, Y = X.to(device), Y.to(device)
            enc_optimizer.zero_grad()
            dec_optimizer.zero_grad()
            
            enc_state = encoder.begin_state(X.shape[0], device)
            enc_outputs, enc_state = encoder(X, enc_state)
            
            dec_input = torch.tensor([out_vocab.stoi[BOS]] * X.shape[0], device=device)
            dec_state = decoder.begin_state(enc_state)
            mask, num_not_pad_tokens = torch.ones(X.shape[0], device=device), 0
            l = torch.tensor(0.0, device=device)
            
            for y in Y.T:
                dec_output, dec_state = decoder(dec_input, dec_state, enc_outputs)
                l += (mask * loss(dec_output, y)).sum()
                dec_input = dec_output.argmax(dim=1)
                num_not_pad_tokens += mask.sum().item()
                mask = mask * (y != out_vocab.stoi[PAD]).float()
            
            l.backward()
            enc_optimizer.step()
            dec_optimizer.step()
            l_sum += l.item()
        
        if (epoch + 1) % 10 == 0:
            print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_iter)))

# 创建数据集和数据加载器
max_seq_len = 50
dataset = TranslationDataset('train.en', 'train.fr', in_vocab, out_vocab, max_seq_len)

# 检查数据集长度
print(f'Dataset size: {len(dataset)}')

batch_size = 64
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 定义模型和训练参数
embed_size, num_hiddens, num_layers = 256, 256, 2
attention_size, drop_prob, lr, num_epochs = 64, 0.5, 0.001, 20

encoder = Encoder(len(in_vocab.stoi), embed_size, num_hiddens, num_layers, drop_prob)
decoder = Decoder(len(out_vocab.stoi), embed_size, num_hiddens, num_layers, attention_size, drop_prob)

# 训练模型
train(encoder, decoder, dataset, lr, batch_size, num_epochs, device)

 

        我已下载了WMT英法模型,但奈何其数据量太大,我的电脑运行不出来,所以我自己手写了一个小的模拟数据集

运行结果如下:

九、参考文献

[1] Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002, July). BLEU: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting on association for computational linguistics (pp. 311-318). Association for Computational Linguistics.

[2] WMT. Translation Task - ACL 2014 Ninth Workshop on Statistical Machine Translation

[3] Tatoeba Project. Tab-delimited Bilingual Sentence Pairs from the Tatoeba Project (Good for Anki and Similar Flashcard Applications)

  • 43
    点赞
  • 39
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值