软件下载
Miniconda:Miniconda — conda documentation
Visual Studio Code: Visual Studio Code - Code Editing. Redefined
miniconda设置
1、更换镜像源
校园网联合镜像站:MirrorZ Help (cernet.edu.cn)
在Anaconda powershell 中输入
notepad .condarc
创建名为condarc的新文件,并将图中红框所圈出来的代码复制粘添上去:
保存好文件后输入
conda clean -a
来清除之前的内容,保证我们所使用的是刚刚的配置。
之后加入第三方源:conda-forge、paddle、pytorch、nvidia。将网站所提供的代码复制粘贴到powershell中。 (注:nvidia在Anaconda Extra 软件仓库镜像使用帮助 - MirrorZ Help (cernet.edu.cn)中)
2、PYPI更换镜像源
复制PyPI 软件仓库镜像使用帮助 - MirrorZ Help (cernet.edu.cn)中设为默认下的代码中第二行代码粘贴到powershell中运行。
课程环境搭建(创建与激活 Conda 环境)
创建 Conda 环境
conda create -n Datawhale python=3.10
激活Conda 环境:
conda activate Datawhal
删除 Conda 环境:
conda deactivate # 退出该环境
conda remove -n Datawhale --all # 删除整个环境
PIP安装
pip install jupyter
然后在查看当前 GPU 支持的最高 CUDA 版本时遇到如下报错:无法将“nvidia-smi”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写,如果包括路径,请确保路径正确,然后再试一次。
经查询发现我的笔记本并没有所要求的显卡,因此无法使用相关功能。