Elasticsearch的算法介绍

1、算法介绍

relevance score算法,简单来说,就是计算出,一个索引中的文本,与搜索文本,他们之间的关联匹配程度

Elasticsearch使用的是 term frequency/inverse document frequency算法,简称为TF/IDF算法

Term frequency:搜索文本中的各个词条在field文本中出现了多少次,出现次数越多,就越相关

搜索请求:hello world

doc1:hello you, and world is very good
doc2:hello, how are you

Inverse document frequency:搜索文本中的各个词条在整个索引的所有文档中出现了多少次,出现的次数越多,就越不相关

搜索请求:hello world

doc1:hello, today is very good
doc2:hi world, how are you

比如说,在index中有1万条document,hello这个单词在所有的document中,一共出现了1000次;world这个单词在所有的document中,一共出现了100次

doc2更相关

Field-length norm:field长度,field越长,相关度越弱

搜索请求:hello world

doc1:{ "title": "hello article", "content": "babaaba 1万个单词" }
doc2:{ "title": "my article", "content": "blablabala 1万个单词,hi world" }

hello world在整个index中出现的次数是一样多的

doc1更相关,title field更短

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值