【Matlab系列】惩罚函数法(内点法、外点法)求解约束优化问题最优值 matlab

本文介绍了如何使用Matlab中的惩罚函数法,包括外点法(外点牛顿法和外点梯度法)和内点法来解决约束优化问题。详细阐述了两种方法的步骤,并提供了相关代码示例,但请注意,部分代码可能存在循环无法停止的问题,需谨慎参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1、 用外点法求下列问题的最优解

方法一:外点牛顿法:

方法二:外点梯度法:

2、用内点法求下列问题的最优解


 

1、 用外点法求下列问题的最优解

 

方法一:外点牛顿法:

clc
m=zeros(1,50);a=zeros(1,50);b=zeros(1,50);f0=zeros(1,50);%a b为最优点坐标,f0为最优点函数值,f1 f2最优点梯度
syms x1 x2 e; %e为罚因子。
m(1)=1;c=10;a(1)=0;b(1)=0; %c为递增系数。赋初值。
f=x1^2+x2^2+e*(1-x1)^2;f0(1)=1;
fx1=diff(f,'x1');
fx2=diff(f,'x2');
fx1x1=diff(fx1,'x1');
fx1x2=diff(fx1,'x2');
fx2x1=diff(fx2,'
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞翔的鲲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值