外点法、内点法解约束问题matlab

在这里插入图片描述

外点法

clc
m=zeros(1,50);
a=zeros(1,50);
b=zeros(1,50);%最优点坐标
f0=zeros(1,50);%最优点函数值
syms d x1 x2 e;
m(1)=1;c=10;a(1)=0;b(1)=0;
f=x1^2+x2^2+e*(1-x1)^2;
f0(1)=1;
fx1=diff(f,'x1');fx2=diff(f,'x2');
for k=1:100
    x1=a(k);
    x2=b(k);e=m(k);
    for n=1:100%梯度法最优值收敛条件求点
        f1=subs(fx1);
        f2=subs(fx2);
        if(double(sqrt(f1^2+f2^2))<=0.002)
            a(k+1)=double(x1);
            b(k+1)=double(x2);
            f0(k+1)=double(subs(f));
            break;
        else
            D=(x1-d*f1)^2+(x2-d*f2)^2+e*(1-(x1-d*f1))^2;
            Dd=diff(D,'d');dd=solve(Dd);x1=x1-dd*f1;x2=x2-dd*f2;
        end
    end
    if (double(sqrt((a(k+1)-a(k))^2+(b(k+1)-b(k))^2))<=0.001)&&(double(abs((f0(k+1)-f0(k))/f0(k)))<=0.001)
        a(k+1)
        b(k+1)
        k
        f0(k+1)
        break;
    else
        m(k+1)=c*m(k);
    end
end
f0(1:k)
t=1:1:50;
plot(t,f0);
ylim([0 1]);
xlabel('k值');
ylabel('f值')
ans =
    0.9999
ans =
     0
k =
     5
ans =

    0.9999
ans =
1.0000    0.5000    0.9091    0.9901    0.9990

在这里插入图片描述
分析总结:外点法可对违反约束的点在目标函数内加入相应的惩罚,而对可行点不予惩罚,此法的可行点一般在可行域外部移动。随着迭代次数增加,迭代点逐渐逼近最优点,惩罚函数值始终大于并逐渐接近原始目标函数值。惩罚项逐渐降低,迭代点在可行域外。

内点法

clc;
m=zeros(1,50);a=zeros(1,50);b=zeros(1,50);f0=zeros(1,50);P0=zeros(1,50);fi=zeros(1,50);
syms x1 x2 e d;
m(1)=1;a(1)=5;b(1)=3;c=0.5;
f=x1^2+x2^2+e*(-log(x1-1));
f_=x1^2+x2^2;
P=e*(-log(1-x1));
f0(1)=1;f1(1)=34-e*log(4);P0(1)=1;fi(1)=34;
fx1=diff(f,'x1');
fx2=diff(f,'x2');
for k=1:100
  e=m(k);x1=a(k);x2=b(k);
  for n=1:100
      f1=subs(fx1);
      f2=subs(fx2);
      if double(sqrt(f1^2+f2^2))<=0.0001 
          a(k+1)=double(x1);b(k+1)=double(x2);f0(k+1)=double(subs(f));
          P0(k+1)=double(subs(P));fi(k+1)=double(subs(f_));
          break
      else
          D=(x1-d*f1)^2+(x2-d*f2)^2+e*(-log(1-x1+d*f1));
          Dd=diff(D,d);dd=vpa(solve(Dd),5);
          
          x1=x1-dd*f1;x2=x2-dd*f2;
          x1=x1(x1>=1);
          x2=x2(x1>=1);
      end
  end
  if double(sqrt((a(k+1)-a(k))^2+(b(k+1)-b(k))^2))<0.0001 && double(abs((f0(k+1)-f0(k))/f0(k)))<=0.0001 
      disp('最优解 x1 = ')
      disp(a(k+1))
      disp('x2 = ')
      disp(b(k+1))
      disp('此时:f(x) =')
      disp(f0(k+1))
      disp('迭代次数:k= ')
      disp(k)
      stem(k,subs(f));hold on
      break
  else
      m(k+1)=c*m(k);
      stem(k,subs(f));hold on
  end
  
end
最优解 x1 = 
    1.0000

x2 = 
   5.3392e-16

此时:f(x) =
    1.0001

迭代次数:k=18 

在这里插入图片描述
分析总结:内点法总是从可行域的内点出发,并保持在可行域内部搜索,这种方法只适合用于不等式约束问题。其对于企图从内部穿越可行域边界的点在目标函数上加入相应的障碍,距离边界越近,障碍越大,在边界上给予无穷大的障碍,从而保障迭代一直在可行域中进行。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

看星河的兔子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值