参考代码
【OpenCV实战】简洁易懂的车牌号识别Python+OpenCV实现“超详解”(含代码)
【1】
【2】
OpenCV
【1】 OpenCV实战(一)——简单的车牌识别
【2】 【OpenCV3】模板匹配——cv::matchTemplate()详解
图像特征匹配算法
SIFT算法
SIFT图像特征匹配,即尺度不变特征变换(Scale-invariant feature transform)算法,是由David G.Lowe于1999年提出,并在2004年加以完善。
利用SIFT方法检测图像特征点的实质就是在不同尺度空间上查找特征点,这些特征点对应的就是不同尺寸的地物。SIFT配准方法主要分为以下几个步骤:
- DOG尺度空间的建立
- 尺度空间中提取关键点
- 生成特征描述子
- 特征点匹配
- 后续的配准流程,如转换模型求解、重采样等。
【1】SIFT图像匹配及其python实现
距离 / 相似度查询
【1】基于动态规划思想的时间序列距离方法介绍
其他
- 文件操作:批量创建多个空文件夹【点这里】