车牌号识别 OpenCV

参考代码

【OpenCV实战】简洁易懂的车牌号识别Python+OpenCV实现“超详解”(含代码)
【1】
【2】

OpenCV

【1】 OpenCV实战(一)——简单的车牌识别
【2】 【OpenCV3】模板匹配——cv::matchTemplate()详解

图像特征匹配算法

SIFT算法

SIFT图像特征匹配,即尺度不变特征变换(Scale-invariant feature transform)算法,是由David G.Lowe于1999年提出,并在2004年加以完善。
利用SIFT方法检测图像特征点的实质就是在不同尺度空间上查找特征点,这些特征点对应的就是不同尺寸的地物。SIFT配准方法主要分为以下几个步骤:

  • DOG尺度空间的建立
  • 尺度空间中提取关键点
  • 生成特征描述子
  • 特征点匹配
  • 后续的配准流程,如转换模型求解、重采样等。

【1】SIFT图像匹配及其python实现

距离 / 相似度查询

【1】基于动态规划思想的时间序列距离方法介绍

其他

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值