【OpenCV实战】简洁易懂的车牌号识别Python+OpenCV实现“超详解”(含代码)

前面4篇博客介绍了OpenCV图像处理的基础知识,本篇博客利用前4篇的知识完成一个小项目——车牌号码识别。该篇博客的代码可以满足小区门禁车牌号的识别。本篇博客是前4篇博客知识的一个综合运用。感觉学会了这个可以实现一系列的图像识别任务。。。毕竟好多技巧都是共通的
首先要感谢 大佬的博客 ,在它的基础上完成了自己的识别任务。

1、整体思路

首先附上本次识别的图片:(图片是我在百度上找的)
在这里插入图片描述
基于OpenCV车牌号识别总体分为四个步骤
1)提取车牌位置,将车牌从图中分割出来;
2)车牌字符的分割;
3)通过模版匹配识别字符;
4)将结果绘制在图片上显示出来。
与深度学习相比,传统图像处理的识

好的,我了解了你的问题。关于利用 Python + OpenCV 识别图片中的圆形(霍夫变换),我可以给你一些详细的解释和代码示例。 首先,我们需要导入 OpenCV 库和 NumPy 库。这里需要注意的是,需要安装正确的 OpenCV 版本,否则可能会出现一些问题。 ```python import cv2 import numpy as np ``` 接下来,我们需要读取图片并将其转换为灰度图像。然后,我们可以对灰度图像进行高斯模糊处理,以减少噪声。这里的高斯核大小可以根据实际情况进行调整。 ```python img = cv2.imread('image.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (5, 5), 0) ``` 接着,我们可以使用霍夫变换检测圆形。这里需要注意的是,需要设置最小半径和最大半径的范围,以及检测圆形的参数阈值。这些参数的设置也需要根据实际情况进行调整。 ```python circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 100, param1=100, param2=30, minRadius=0, maxRadius=0) ``` 最后,我们可以将检测到的圆形标记出来,并显示图片。 ```python if circles is not None: circles = np.round(circles[0, :]).astype("int") for (x, y, r) in circles: cv2.circle(img, (x, y), r, (0, 255, 0), 2) cv2.imshow("Image", img) cv2.waitKey(0) ``` 完整代码如下: ```python import cv2 import numpy as np img = cv2.imread('image.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (5, 5), 0) circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 100, param1=100, param2=30, minRadius=0, maxRadius=0) if circles is not None: circles = np.round(circles[0, :]).astype("int") for (x, y, r) in circles: cv2.circle(img, (x, y), r, (0, 255, 0), 2) cv2.imshow("Image", img) cv2.waitKey(0) ``` 希望这个代码示例能对你有所帮助!
评论 189
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值