DataWhale“深入浅出PyTorch”第五章

教程前四章的打卡记录:深入迁出pytorch专栏
该教程的GitHub地址:深入浅出PyTorch
哔哩哔哩视频地址:深入浅出Pytorch

DataWhale“深入浅出PyTorch”第五章——PyTorch模型定义的方式

模型在深度学习中具有重要的作用,特定的模型能更好地完成解决特定的问题。

  • CNN:解决图像、视频处理
  • RNN/LSTM:解决序列数据处理
  • GNN:在图模型上发挥重要作用

1.1 前置知识

  • Module 类是 torch.nn 模块里提供的一个模型构造类 (nn.Module),是所有神经网络模块的基类,我们可以继承它来定义我们想要的模型;
  • PyTorch模型定义包括两个主要部分:各个部分的初始化(_init_);数据流向定义(forward)

基于nn.Module,pytorch模型的定义方式有如下三种:Sequential,ModuleListModuleDict

1.2 Sequential(顺序的)

对应模块为nn.Sequential()
该模型的前向计算就是将这些实例按添加的顺序逐一计算,它可以接收一个子模块的有序字典(OrderedDict) 或者一系列子模块作为参数来逐一添加 Module 的实例。
下面结合Sequential和定义方式来理解:


class MySequential(nn.Module):
    from collections import OrderedDict
    def __init__(self, *args):
        super(MySequential, self).__init__()
        if len(args) == 1 and isinstance(args[0], OrderedDict): # 如果传入的是一个OrderedDict
            for key, module in args[0].items():
                self.add_module(key, module)  # add_module方法会将module添加进self._modules(一个OrderedDict)
        else:  # 传入的是一些Module
            for idx, module in enumerate(args):
                self.add_module(str(idx), module)
    def forward(self, input):
        # self._modules返回一个 OrderedDict,保证会按照成员添加时的顺序遍历成
        for module in self._modules.values():
            input = module(input)
        return input

Sequential定义模型时只要将模型的层按序排列起来即可,根据层名不同有直接排列有序字典OrderedDict两种方式。

  • 直接排列
    在这里插入图片描述

  • 有序字典OrderedDict
    在这里插入图片描述
    总结
    Sequential定义模型

  • 好处:简单易读且因为顺序已经订好了则不需要再写forward

  • 坏处:丧失灵活性,例如不适合完成在模型中间加入一个外部输入

1.3 ModuleList

对应模块为nn.ModuleList()。
ModuleList 接收一个子模块(或层,需属于nn.Module类)的列表作为输入,然后也可以类似List那样进行行append和extend操作。同时,子模块或层的权重也会自动添加到网络中来。

ModuleList类的定义(PyTorch文档中的ModuleList):

class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(10)])

    def forward(self, x):
        # ModuleList can act as an iterable, or be indexed using ints
        for i, l in enumerate(self.linears):
            x = self.linears[i // 2](x) + l(x)
        return x

实例化ModuleList并测试部分功能

    net = nn.ModuleList([nn.Linear(784, 256), nn.ReLU()])
    net.append(nn.Linear(256, 10))  # # 类似List的append操作
    net.append(nn.Linear(256, 8))  

    net.extend((nn.Linear(256,7),nn.ReLU()))#extend操作,在后面追加多个值
    print(net[-1])  # 类似List的索引访问
    print(net)

上面代码输出结果:


ReLU()
ModuleList(
  (0): Linear(in_features=784, out_features=256, bias=True)
  (1): ReLU()
  (2): Linear(in_features=256, out_features=10, bias=True)
  (3): Linear(in_features=256, out_features=8, bias=True)
  (4): Linear(in_features=256, out_features=7, bias=True)
  (5): ReLU()
)

注意
nn.ModuleList 并没有定义一个网络,它只是将不同的模块储存在一起。ModuleList中元素的先后顺序并不代表其在网络中的真实位置顺序,需要经过forward函数指定各个层的先后顺序后才算完成了模型的定义。

1.4 ModuleDict

对应模块为nn.ModuleDict()。
ModuleDict和ModuleList的作用类似,只是ModuleDict能够更方便地为神经网络的层添加名称。

ModuleDict类的定义:(PyTorch文档中的ModuleDict)

class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        self.choices = nn.ModuleDict({
                'conv': nn.Conv2d(10, 10, 3),
                'pool': nn.MaxPool2d(3)
        })
        self.activations = nn.ModuleDict([
                ['lrelu', nn.LeakyReLU()],
                ['prelu', nn.PReLU()]
        ])

    def forward(self, x, choice, act):
        x = self.choices[choice](x)
        x = self.activations[act](x)
        return x

实例化ModuleDict类

    net = nn.ModuleDict({
        'linear': nn.Linear(784, 256),
        'act': nn.ReLU(),
    })
    net['output'] = nn.Linear(256, 10)  # 添加
    net['test'] = nn.Linear(256,11)
    print(net['linear'])  # 访问
    print(net.output)
    print(net['test'])
    print(net)

输出结果

Linear(in_features=784, out_features=256, bias=True)
Linear(in_features=256, out_features=10, bias=True)
Linear(in_features=256, out_features=11, bias=True)
ModuleDict(
  (linear): Linear(in_features=784, out_features=256, bias=True)
  (act): ReLU()
  (output): Linear(in_features=256, out_features=10, bias=True)
  (test): Linear(in_features=256, out_features=11, bias=True)
)

1.5 三种方法的比较与使用场景

  1. Sequential适用于快速验证结果,因为已经明确了要用哪些层,直接写一下就好了,不需要同时写__init__和forward;

  2. ModuleList和ModuleDict在某个完全相同的层需要重复出现多次时,非常方便实现,可以”一行顶多行“;

  3. 当我们需要之前层的信息的时候,比如 ResNets 中的 残差计算,当前层的结果需要和之前层中的结果进行融合,一般使用 ModuleList/ModuleDict 比较方便。

2.1 利用模型块快速搭建复杂网络

上一节给出的示例都是用torch.nn中的层来完成的,这种定义方式易于理解但在实际场景中却很少被使用。当模型的深度非常大时候,使用Sequential定义模型结构需要向其中添加几百行代码,使用起来不甚方便。
所以对于大部分模型结构(比如ResNet、DenseNet等),虽然模型有很多层,
但是其中有很多重复出现的结构。考虑到每一层有其输入和输出,若干层串联成的”模块“也有其输入和输出,如果我们能将这些重复出现的层定义为一个”模块“,每次只需要向网络中添加对应的模块来构建模型,这样将会极大便利模型构建的过程。

下面将以经典的医学影响分割模型U-Net为例,介绍如何构建模型块以及如何利用模型块快速搭建复杂模型。

U-Net模型结构如下图所示,通过残差连接结构解决了模型学习中的退化问题,使得神经网络的深度能够不断扩展。
在这里插入图片描述

2.2 U-Net模型块分析

特点: 良好的对称性,模型从上到下分为若干层,每层由左侧和右侧两个模型块组成,每侧的模型块与其上下模型块之间有连接;同时位于同一层左右两侧的模型块之间也有连接,称为“Skip-connection”。此外还有输入和输出处理等其他组成部分。因为模型的形状类似与字母"U",因此被命名为"U-Net".

U-Net的模型块的主要组成部分:
1)每个子块内部的两次卷积(Double Convolution,图中蓝色箭头

2)左侧模型块之间的下采样连接,通过Max pooling来实现(图中红色箭头

3)右侧模型块之间的上采样连接(Up sampling,图中绿色箭头

4)输出层的处理(最后一个蓝绿色j箭头,1*1卷积核)

除模型块外,还有模型块之间的横向连接,输入和U-Net底部的连接等计算,这些单独的操作可以通过forward函数来实现。

2.3 U-Net模型块实现

具体代码太多就不贴了,自己也没弄得很懂,具体可看链接:5.2.3部分

3.1 修改模型层

以pytorch官方视觉库torchvision预定义好的模型ResNet50为例,探索如何修改模型的某一层或者某几层。我们先看看模型的定义是怎样的:

import torchvision.models as models
net = models.resnet50()
print(net)

最后的输出结果:
在这里插入图片描述
这里模型结构是为了适配ImageNet预训练的权重,因此最后全连接层(fc)的输出节点数是1000。

假设我们要用这个resnet模型去做一个10分类的问题,就应该修改模型的fc层,将其输出节点数替换为10。另外,我们觉得一层全连接层可能太少了,想再加一层。可以做如下修改:

from collections import OrderedDict
classifier = nn.Sequential(OrderedDict([('fc1', nn.Linear(2048, 128)),
                          ('relu1', nn.ReLU()), 
                          ('dropout1',nn.Dropout(0.5)),
                          ('fc2', nn.Linear(128, 10)),
                          ('output', nn.Softmax(dim=1))
                          ]))
    
net.fc = classifier
print(net)

最后部分的输出结果如下:
在这里插入图片描述将模型(net)最后名称为“fc”的层替换成了我们自己定义的名称为“classifier”的结构。

3.2 添加外部输入

有时候在模型训练中,除了已有模型的输入之外,还需要输入额外的信息。比如在CNN网络中,我们除了输入图像,还需要同时输入图像对应的其他信息,这时候就需要在已有的CNN网络中添加额外的输入变量。

以torchvision的resnet50模型为基础,任务还是10分类任务。不同点在于,我们希望利用已有的模型结构,在倒数第二层增加一个额外的输入变量add_variable来辅助预测。具体实现如下:

class Model(nn.Module):
    def __init__(self, net):
        super(Model, self).__init__()
        self.net = net
        self.relu = nn.ReLU()
        self.dropout = nn.Dropout(0.5)
        self.fc_add = nn.Linear(1001, 10, bias=True)
        self.output = nn.Softmax(dim=1)
        
    def forward(self, x, add_variable):
        x = self.net(x)
        x = torch.cat((self.dropout(self.relu(x)), add_variable.unsqueeze(1)),1)
        x = self.fc_add(x)
        x = self.output(x)
        return x

net = models.resnet50()
model = Model(net)
print(model)

最后的输出结果如下:
在这里插入图片描述
这里的实现要点是通过torch.cat实现了tensor的拼接。torchvision中的resnet50输出是一个1000维的tensor,我们通过修改forward函数(配套定义一些层),先将2048维的tensor通过激活函数层和dropout层,再和外部输入变量"add_variable"拼接,之后再通过全连接层映射到指定的输出维度10,也即上图的fc_add处。

3.3 添加额外输出

有时候在模型训练中,除了模型最后的输出外,我们需要输出模型某一中间层的结果,以施加额外的监督,获得更好的中间层结果。基本的思路是修改模型定义中forward函数的return变量

class Model(nn.Module):
    def __init__(self, net):
        super(Model, self).__init__()
        self.net = net
        self.relu = nn.ReLU()
        self.dropout = nn.Dropout(0.5)
        self.fc1 = nn.Linear(1000, 10, bias=True)
        self.output = nn.Softmax(dim=1)
        
    def forward(self, x, add_variable):
        x1000 = self.net(x)
        x10 = self.dropout(self.relu(x1000))
        x10 = self.fc1(x10)
        x10 = self.output(x10)
        return x10, x1000
 
import torchvision.models as models
net = models.resnet50()
model = Model(net)
print(model)

输出结果:

在这里插入图片描述

4.1 PyTorch模型保存与读取

PyTorch存储模型主要采用pkl,pt,pth三种格式。

4.2 模型存储内容

一个PyTorch模型主要包含两个部分:模型结构和权重。其中模型是继承nn.Module的类,权重的数据结构是一个字典(key是层名,value是权重向量)。存储也由此分为两种形式:存储整个模型(包括结构和权重),和只存储模型权重。

from torchvision import models
model = models.resnet152(pretrained=True)

# 保存整个模型
torch.save(model, save_dir)
# 保存模型权重
torch.save(model.state_dict, save_dir)

对于PyTorch而言,pt, pth和pkl三种数据格式均支持模型权重和整个模型的存储,因此使用上没有差别。

4.3 单卡和多卡模型存储与加载

详细看链接:5.4.3~5.4.4部分

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值