激活函数、BP反向传播算法、三种梯度下降、softmax函数及其推导

  1. 激活函数的作用:
    由于我们使用的神经网络分类器是线性方程,如w1x1+w2x2+…+wnxn + bi= 0,这种方程所划分的区域总是直线类似的/折线,这种划分不能很好的划分曲面形状,所以通过引入激活函数,这种激活函数不同于一次函数,它是一种曲线,由此划分出来的界限或者高维界面就是一种曲线或者曲面,能够更好的拟合分解。
    参考文章:形象的解释神经网络激活函数的作用是什么?

  2. BP方向传播算法:
    这里面的主要原理是梯度下降算法,记住梯度的反方向是下降最快的方向。设权重为w,输出为yout,输出对比值为y,误差为C=(yout-y),则推导:w->yout->C;得C是w的函数,通过C对w取梯度导数,得到最大下降方向,设导数为d(w),则更新权值w=w-d(w);以此类推,向前传播。
    参考链接:通俗理解神经网络BP传播算法

  3. 三种梯度下降:

    • 批量梯度下降(BGD):计算所有的样本来对权值进行更改。可以直接向着极小值下降,但是计算量大,速度慢。
    • 随机梯度下降(SGD):随机选取一个样本进行权值更新,虽然不像批量这样直接向着极小值下降,但是总体来说也是渐渐向着最优处下降。同时由于计算量少,计算速度很快
    • 小批量梯度下降(MBGD):每次只是选取一批样本进行权值更新,样本大小batch根据需要自己改变。这样既减少了计算量,又尽可能的向着极小值下降。
      参考链接:详解梯度下降法的三种形式BGD、SGD以及MBGD
  4. softmax函数的作用和推导:
    sigmoid是用来而分类的,softmax用来多分类;softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,并将每个类别出现的次数的多少作为选取的目标,而不是只选取最多的那个,这样更显公平。可以看成概率来理解,从而来进行多分类!
    参考链接:通俗详解softmax函数及其求导过程

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
反向传播算法(Backpropagation)是一种用于训练神经网络的常见优化算法。它通过计算损失函数相对于每个参数的梯度,并使用梯度下降来更新参数。下面我将给出反向传播算法的公式推导及示例代码。 1. 反向传播算法公式推导: 首先,定义神经网络的损失函数为L,该函数是由网络输出和真实标签之间的差异计算得出。假设神经网络有多个隐藏层,每个隐藏层的参数为W和b。 1.1 前向传播: 首先,我们通过前向传播计算每一层的输出值。假设输入为x,第l层的输出为a[l],则有: a = x z[l] = W[l] * a[l-1] + b[l] a[l] = g(z[l]) 其中,g()是激活函数。 1.2 反向传播: 接下来,我们需要计算损失函数相对于每个参数的梯度,然后使用梯度下降更新参数。假设我们有L层神经网络,则有以下公式: 输出层的梯度: dz[L] = dL / da[L] * g'(z[L]) 隐藏层的梯度: dz[l] = (W[l+1]的转置 * dz[l+1]) * g'(z[l]) 参数梯度: dW[l] = dz[l] * a[l-1的转置] db[l] = dz[l] 更新参数: W[l] = W[l] - learning_rate * dW[l] b[l] = b[l] - learning_rate * db[l] 其中,dL / da[L]是损失函数对输出层输出的导数,g'()是激活函数的导数。 2. 反向传播算法示例代码: 下面是一个使用反向传播算法进行训练的示例代码: ```python # 假设网络有三个隐藏层 hidden_layers = [10, 20, 30] output_size = 2 # 初始化参数 parameters = {} layers_dims = [input_size] + hidden_layers + [output_size] L = len(layers_dims) - 1 for l in range(1, L + 1): parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l-1]) * 0.01 parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) # 前向传播 def forward_propagation(X, parameters): caches = [] A = X for l in range(1, L): Z = np.dot(parameters['W' + str(l)], A) + parameters['b' + str(l)] A = sigmoid(Z) cache = (Z, A) caches.append(cache) Z = np.dot(parameters['W' + str(L)], A) + parameters['b' + str(L)] AL = softmax(Z) cache = (Z, AL) caches.append(cache) return AL, caches # 反向传播 def backward_propagation(AL, Y, caches): grads = {} dZ = AL - Y m = AL.shape[1] grads['dW' + str(L)] = 1/m * np.dot(dZ, caches[-1][1].T) grads['db' + str(L)] = 1/m * np.sum(dZ, axis=1, keepdims=True) for l in reversed(range(1, L)): dA_prev = np.dot(parameters['W' + str(l+1)].T, dZ) dZ = dA_prev * sigmoid_derivative(caches[l-1][0]) grads['dW' + str(l)] = 1/m * np.dot(dZ, caches[l-1][1].T) grads['db' + str(l)] = 1/m * np.sum(dZ, axis=1, keepdims=True) return grads # 参数更新 def update_parameters(parameters, grads, learning_rate): for l in range(1, L+1): parameters['W' + str(l)] -= learning_rate * grads['dW' + str(l)] parameters['b' + str(l)] -= learning_rate * grads['db' + str(l)] return parameters # 训练模型 def train_model(X, Y, learning_rate, num_iterations): for i in range(num_iterations): AL, caches = forward_propagation(X, parameters) cost = compute_cost(AL, Y) grads = backward_propagation(AL, Y, caches) parameters = update_parameters(parameters, grads, learning_rate) if i % 100 == 0: print("Cost after iteration {}: {}".format(i, cost)) return parameters # 使用示例 parameters = train_model(X_train, Y_train, learning_rate=0.01, num_iterations=1000) ``` 这是一个简单的反向传播算法示例代码,其中的sigmoid()、softmax()、sigmoid_derivative()和compute_cost()函数需要根据具体情况自行实现。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值