算法学习——GCD与欧拉函数

本文介绍了欧几里得GCD算法的辗转相除法实现,包括递归和迭代版本,并详细解释了欧拉函数的定义和计算方法,以及相关代码模板。重点讨论了如何利用质因数分解来求解欧拉函数Euler(n)。
摘要由CSDN通过智能技术生成

欧几里得GCD:

GCD算法是使用辗转相除法求最大公因数的算法,简单而言就是gcd(a,b) = gcd(b,a mod b)

递归写法:
int Gcd(int a, int b)
{
    if(b == 0)
        return a;
    return Gcd(b, a % b);
}
迭代写法:
int Gcd(int a, int b)
{
    while(b != 0)
    {
        int r = b;
        b = a % b;
        a = r;
    }
    return a;
}

欧拉函数:

欧拉函数Euler(n):表示不大于n且与n互质的正整数的个数。

由唯一分解定理,n=p1^k1*p2^k2*...*pn^km,pi均为质数,ki是其幂次。

由此可推出欧拉函数的求法:Euler(n)=n/p1*(p1-1)/p2*(p2-1)/.../pn*(pn-1)

上面的公式该怎么理解呢?

让我们看看GPT怎么说

 

也就是说最终的目的就是去除掉所有质因数。上式中的1/pi*(pi-1) == (1- 1/pi),本质一样。

代码:

ull Euler(ull n)//求n的欧拉函数(固定模板) 
{
    ull phi=n;
    for(int i=2;i*i<=n;i++)//枚举n的质因数 
    {
        if(n%i)continue;
        while(n%i==0)//i是质因数 
        {
            n=n/i;//n不断除以i直至i不再是n的质因数 
        }
        phi=phi/i*(i-1);//递推欧拉函数,Euler(n)=n/pi*(pi-1) 
    }    
    //最后可能还剩下一个大于n的因子,如12=2*2*3,最后将剩下3,补充上 
    if(n>1)phi=phi/n*(n-1);
    return phi;
}

我们简单解释下这个代码。根据上面的结论,如果 p 为素数,n 是 p 的正整数次方,那么Euler(n) = n * (1 - 1/p)。所以phi=phi/i*(i-1);就是在求每个质因子带来的互质数的个数。而while循环则是在不断的改变n,因为我们每次迭代一个因子的同时,我们在计算完phi后要消除这个质因子在n中的影响,所以我们通过while循环不断除以这个因子。

为什么是 i * i <= n呢?这是因为 12 = 2 * 6,有了2就不需要另一部分了。

最后如有遗漏的情况也加上。

  • 13
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值