神经网络

目录


神经网络可以使用 torch.nn 包来构建。nn 依赖 autograd 来定义模型并对其进行微分。一个 nn.Module 包含层以及返回输出的 forward 方法。

下图为对数字进行分类的神经网络:在这里插入图片描述
它是一个简单的前馈网络。 它接受输入,一个接一个地将其通过几个层,最终给出输出。

神经网络的典型训练过程如下:

  • 定义具有一些可学习参数(或权重)的神经网络。
  • 迭代输入数据集
  • 通过神经网络处理输入
  • 计算损失(输出距离正确的目标值有多远)
  • 将梯度传播回神经网络的参数
  • 通常使用简单的更新规则更新网络权重:weight = weight - learning_rate * gradient

1、定义神经网络

import torch
import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        # 1 input image channel, 6 output channels, 3x3 square convolution kernel
        self.conv1 = nn.Conv2d(1, 6, 3)
        self.conv2 = nn.Conv2d(6, 16, 3)
        # an affine operation: y = Wx + b
        self.fc1 = nn.Linear(16 * 6 * 6, 120)  # 6*6 from image dimension
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # Max pooling over a (2, 2) window
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        # If the size is a square you can only specify a single number
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def num_flat_features(self, x):
        size = x.size()[1:]  # all dimensions except the batch dimension
        num_features = 1
        for s in size:
            num_features *= s
        return num_features


net = Net()
print(net)

输出

Net(
  (conv1): Conv2d(1, 6, kernel_size=(3, 3), stride=(1, 1))
  (conv2): Conv2d(6, 16, kernel_size=(3, 3), stride=(1, 1))
  (fc1): Linear(in_features=576, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)

你只需要定义 forward 方法,backward 方法将会自动被定义。你可以在 forward 方法中使用任何tensor操作。

net.patameters() 返回模型的可学习参数。

params = list(net.parameters())
print(len(params))
print(params[0].size())  # conv1's .weight

输出:

10
torch.Size([6, 1, 3, 3])

让我们尝试一个随机的32x32输入。 注意:此网络(LeNet)的预期输入大小为32x32。 要在MNIST数据集上使用此网络,请将数据集中的图像调整为32x32。

input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out)

输出:

tensor([[ 0.0057, -0.0952,  0.1055, -0.0916, -0.1350,  0.0857, -0.0890,  0.0326,
         -0.0554,  0.1451]], grad_fn=<AddmmBackward>)

将所有参数的梯度缓冲区置零,并使用随机梯度进行反向传播:

net.zero_grad()
out.backward(torch.randn(1, 10))

注意

  • torch.nn仅支持 mini-batches。 整个torch.nn包只支持小批量样本的输入,而不是单个样本
  • 例如,nn.Conv2d 将采用4维张量:nSamples x nChannels x Height x Width
  • 如果你有单个样本,只需使用 input.unsqueeze(0)添加一个假的批量维度。

总结:

  • torch.Tensor - 支持autograd操作(如backward())的多维数组。 同时保存关于tensor的梯度。
  • nn.Module - 神经网络模块。 方便的封装参数的方法,使用帮助程序将它们移动到GPU,导出,加载等。
  • nn.Parameter - 一种Tensor,在被指定为Module的属性时自动注册为参数。
  • autograd.Function - 实现 autograd 操作的 forwardbackward 定义。 每个Tensor操作都会创建至少一个 Function节点,该节点连接到创建Tensor并对其历史进行编码的函数。

2、损失函数

损失函数以(输出,目标)对为输入,并计算一个值以估计输出距和目标之间的距离。
nn包下有几种不同的损失函数。 一个简单的损失是:nn.MSELoss,计算输入和目标之间的均方误差。

例如:

output = net(input)
target = torch.randn(10)  # a dummy target, for example
target = target.view(1, -1)  # make it the same shape as output
criterion = nn.MSELoss()

loss = criterion(output, target)
print(loss)

输出:

tensor(0.9991, grad_fn=<MseLossBackward>)

现在,如果你使用 .grad_fn 属性在反向方向上跟随损失,你将看到如下所示的计算图:

input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d
      -> view -> linear -> relu -> linear -> relu -> linear
      -> MSELoss
      -> loss

因此,当我们调用 loss.backward() 时,整个计算图关于loss被微分,图中所有具有requires_grad = True的tensor将拥有梯度累积的.grad Tensor。

print(loss.grad_fn)  # MSELoss
print(loss.grad_fn.next_functions[0][0])  # Linear
print(loss.grad_fn.next_functions[0][0].next_functions[0][0])  # ReLU

输出:

<MseLossBackward object at 0x7ff716c28630>
<AddmmBackward object at 0x7ff716c28400>
<AccumulateGrad object at 0x7ff716c28400>

3、反向传播

要反向传播误差,我们所要做的就是 lost.backward()。 你需要清除现有梯度,否则梯度将累积到现有梯度上。

现在我们将调用 loss.backward(),并查看 conv1 在反向传播之前和之后的偏置梯度。

net.zero_grad()     # zeroes the gradient buffers of all parameters

print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)

loss.backward()

print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)

输出:

conv1.bias.grad before backward
tensor([0., 0., 0., 0., 0., 0.])
conv1.bias.grad after backward
tensor([ 0.0081,  0.0029,  0.0248, -0.0054,  0.0051,  0.0008])

4、更新参数

实践中使用的最简单的更新规则是随机梯度下降(SGD):
weight = weight - learning_rate * gradient

我们可以使用简单的Python代码实现:

learning_rate = 0.01
for f in net.parameters():
    f.data.sub_(f.grad.data * learning_rate)

然而,当你使用神经网络时,您希望使用各种不同的更新规则,例如SGD,Nesterov-SGD,Adam,RMSProp等。为了实现这一点,我们构建了一个包:torch.optim,它实现了所有这些方法。 使用它非常简单:

import torch.optim as optim

# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)

# in your training loop:
optimizer.zero_grad()   # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()    # Does the update

注意:
观察如何使用 optimizer.zero_grad() 手动将梯度缓冲区设置为零。 这是因为梯度是累积的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值