线性代数------矩阵1

矩阵

矩阵是什么

先来看一个很有意思的小题目:

现在有5个房子, 房子的门的颜色有黄,蓝,红,绿和橙色

人物有:小明, 小红, 小兰, 小白, 小黄.

宠物有: 蜗牛, 小狗, 小猫, 小白兔, 小金鱼

饮料有: 水, 茶, 牛奶, 果汁, 咖啡.

食物有: 圆葱, 香蕉, 苹果, 蘑菇, 蛋糕.

现在的情况是这样的:

小明住在红门的房子里.

喝牛奶的住在中间房子里.

小白有只小猫, 邻居有只小金鱼.

小黄住在最左边的房子里.

住在绿门房子里的喝咖啡.

吃圆葱的住在吃苹果的右边.

小兰和茶还有只小狗.

吃蛋糕的喝果汁.

绿门房子在最右边, 橙门房子在其左边.

吃苹果的邻居有只小狗.

吃蘑菇的有一直小蜗牛.

小白吃香蕉.

住在黄门房子里的吃苹果.

小黄的邻居加的房门是蓝色的.

问题是: 谁喝水, 谁有只小金鱼.

最简单的作法就是做一个数表.

房子1房子2房子3房子4房子5
人物
宠物
饮料
食物

根据题目提供的信息,依次把信息填入数表,就能得出问题的答案.

生活中这样的数表比比皆是.

把这些数表中代表的具体事项去掉,只单独抽象出这些数字来, 就得到了矩形的数表. 这些数表就称做矩阵.英文是matrix.

矩阵还可以用来表示线性方程组.

比如: a 11 x 1 + a 12 x 2 + … + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + … + a 2 n x n = b 2 , ⋯ ⋯ ⋯ ⋯ a m 1 x 1 + a m 2 x 2 + … + a m n x n = b m a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n=b1, \\a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}xn=b2, \\ \cdots \cdots \cdots \cdots \\a_{m1}x_1 + a_{m2}x2 + \ldots + a_{mn}x_n=b_m a11x1+a12x2++a1nxn=b1,a21x1+a22x2++a2nxn=b2,am1x1+am2x2++amnxn=bm

a 11 a_{11} a11

可以表示为:

[ a 11 a 12 … a 1 n b 1 a 21 a 22 … a 2 n b 2 ⋯ ⋯ ⋯ ⋯ a m 1 a m 2 … a m n b m ] \left[\begin{matrix} a_{11}\qquad a_{12} \qquad \ldots \qquad a_{1n} \qquad b1\\ a_{21}\qquad a_{22} \qquad \ldots \qquad a_{2n} \qquad b2 \\ \cdots \cdots \cdots \cdots\\ a_{m1} \qquad a_{m2} \qquad \ldots \qquad a_{mn} \qquad b_m \end{matrix}\right] a11a12a1nb1a21a22a2nb2am1am2amnbm

矩阵还可以表示为线性变换的描述.这一点我们讲线性代数的直观表示的时候再讲.

m × n m \times n m×n个数按一定的次序排成的m行n列的矩形鼠标称为 m × n m \times n m×n的矩阵, 简称矩阵.

[ a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋯ ⋯ ⋯ ⋯ a m 1 a m 2 … a m n ] \left[\begin{matrix} a_{11}\qquad a_{12} \qquad \ldots \qquad a_{1n}\\ a_{21}\qquad a_{22} \qquad \ldots \qquad a_{2n} \\ \cdots \cdots \cdots \cdots\\ a_{m1} \qquad a_{m2} \qquad \ldots \qquad a_{mn}\end{matrix}\right] a11a12a1na21a22a2nam1am2amn

手写矩阵一般会用圆括号, 打印会用中括号,因为好看.

横的各排称为矩阵的行, 竖的各排称为矩阵的列. a i j a_{ij} aij称为矩阵的第 i i i j j j列的元素.

元素是实数的矩阵称为实矩阵, 我们只讨论实矩阵.

矩阵通常用大写字母表示A,B,C,D等.

[ a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋯ ⋯ ⋯ ⋯ a m 1 a m 2 … a m n ] 简 记 为 A = ( a i j ) m × n \left[\begin{matrix} a_{11}\qquad a_{12} \qquad \ldots \qquad a_{1n}\\ a_{21}\qquad a_{22} \qquad \ldots \qquad a_{2n} \\ \cdots \cdots \cdots \cdots\\ a_{m1} \qquad a_{m2} \qquad \ldots \qquad a_{mn}\end{matrix}\right] 简记为A=(a_{ij})_{m \times n} a11a12a1na21a22a2nam1am2amnA=(aij)m×n

只有一行的矩阵叫做行矩阵, 只有一列的矩阵叫做列矩阵.

matrix的复数是什么?

几种特殊的矩阵

方阵

行列数相等的矩阵就是方阵

方阵有主对角线和斜对角线.

零矩阵

全是0的矩阵,叫做零矩阵, 一般用大写的O表示.

对角矩阵(对角阵)

主对角线上的元素是非0元素, 其他位置都是0的矩阵.

对角阵用 Λ \Lambda Λ表示

单位矩阵

主对角线上全是1,其余部分全是0的矩阵.记做 E n E_n En

数量阵

主对角线上的元素都是非零的相同元素.(也是一种对角矩阵)

三角阵

三角阵分为上三角阵和下三角阵

上三角阵是主对角线及其上方元素非零, 下三角阵是主对角线及其下方元素非零.

梯形阵

A = ( a i j ) m × n A=(a_{ij})_{m\times n} A=(aij)m×n为非零矩阵,若非零行(即至少有一个非零元素的行)全在零行的上面, A中各非零行中的第一个(最后一个)非零元素前(后)面零元素的个数随行数增大而增多(减少), 则称为上(下)梯形矩阵. 简称为上(下)梯形阵.

[ 1 2 3 4 5 0 0 7 8 0 0 0 0 0 0 ] 是 什 么 矩 阵 ? \left[\begin{matrix} 1\qquad 2 \qquad 3 \qquad 4 \qquad 5\\ 0\qquad 0 \qquad 7 \qquad 8 \qquad 0\\ 0 \qquad 0 \qquad 0 \qquad0 \qquad 0 \end{matrix}\right] 是什么矩阵? 123450078000000?

[ 5 7 0 12 3 0 1 2 2 1 0 0 0 8 9 0 0 0 8 1 ] 是 什 么 矩 阵 ? \left[\begin{matrix} 5\qquad 7 \qquad 0 \qquad 12 \qquad 3\\ 0\qquad 1 \qquad 2 \qquad 2 \qquad 1\\ 0 \qquad 0 \qquad 0 \qquad8 \qquad 9 \\ 0 \qquad 0 \qquad 0 \qquad8 \qquad 1 \end{matrix}\right] 是什么矩阵? 570123012210008900081?

[ 1 0 0 0 0 − 9 6 0 0 0 1 2 3 0 0 5 2 3 3 0 ] 是 什 么 矩 阵 ? \left[\begin{matrix} 1\qquad 0 \qquad 0 \qquad 0 \qquad 0\\-9\qquad 6 \qquad 0 \qquad 0 \qquad 0\\ 1 \qquad 2 \qquad 3 \qquad0 \qquad 0 \\ 5 \qquad 2 \qquad 3 \qquad3 \qquad 0 \end{matrix}\right] 是什么矩阵? 10000960001230052330?

[ 1 0 0 0 1 2 0 0 0 0 0 0 ] 是 什 么 矩 阵 ? \left[\begin{matrix} 1\qquad 0 \qquad 0 \qquad 0\\ 1\qquad 2 \qquad 0 \qquad 0 \\ 0 \qquad 0 \qquad 0 \qquad0 \end{matrix}\right] 是什么矩阵? 100012000000?

简单来说就是上梯形阵0元素的个数在增加, 下梯形阵0元素的个数在减少,对增加或减少的数量没有要求.

思考, 以下两个矩阵是否是梯形阵?

[ 1 0 0 0 0 5 0 6 0 0 2 3 4 0 0 0 0 0 0 0 ] \left[\begin{matrix} 1\qquad 0 \qquad 0 \qquad 0 \qquad 0\\ 5\qquad 0 \qquad 6 \qquad 0 \qquad 0\\ 2 \qquad 3 \qquad 4 \qquad0 \qquad 0 \\ 0 \qquad 0 \qquad 0 \qquad0 \qquad 0 \end{matrix}\right] 10000506002340000000

[ 4 4 3 2 1 1 2 3 0 0 1 0 0 0 0 ] \left[\begin{matrix} 4\qquad 4 \qquad 3 \qquad 2 \qquad 1\\ 1\qquad 2 \qquad 3 \qquad 0 \qquad 0\\ 1 \qquad 0 \qquad 0 \qquad0 \qquad 0 \end{matrix}\right] 443211230010000

矩阵的运算

矩阵的线性运算

相等

两个矩阵相等是指这两个矩阵行列数相同,且对应元素相等.即:

A = ( a i j ) m × n = B = ( b i j ) m × n , 对 应 元 素 相 等 a i j = b i j A=(a_{ij})_{m \times n} = B=(b_{ij})_{m \times n}, 对应元素相等a_{ij}=b_{ij} A=(aij)m×n=B=(bij)m×n,aij=bij

加,减法

矩阵的加,减法就是同型矩阵对应元素相加减.

A = ( a i j ) m × n = B = ( b i j ) m × n 定 义 A=(a_{ij})_{m \times n} = B=(b_{ij})_{m \times n} 定义 A=(aij)m×n=B=(bij)m×n

A + B = ( a i j + b i j ) m × n A − B = ( a i j − b i j ) m × n A + B= (a_{ij} +b_{ij})_{m \times n} \qquad A - B = (a_{ij} - b_{ij})_{m \times n} A+B=(aij+bij)m×nAB=(aijbij)m×n

运算规律:

A + B = B + A , ( A + B ) + C = A + ( B + C ) A + O = A = O + A , A − A = O A +B = B +A, (A +B) +C = A +(B + C) \\ A + O = A = O + A, A - A = O A+B=B+A,(A+B)+C=A+(B+C)A+O=A=O+A,AA=O

负矩阵: A = ( a i j ) m × n 的 负 矩 阵 为 ( − a i j ) m × n A=(a_{ij})_{m\times n}的负矩阵为(-a_{ij})_{m \times n} A=(aij)m×n(aij)m×n

数乘

矩阵与数的乘法,简称数乘, k与矩阵A的数乘,记做: k A kA kA

即每个元素和k做乘法.

运算规律:

k ( A + B ) = k A + k B k ( l A ) = ( k l ) A , ( k + l ) A = k A + l A k(A +B)= kA + kB \\k(lA)=(kl)A, (k + l)A=kA +lA k(A+B)=kA+kBk(lA)=(kl)A,(k+l)A=kA+lA

矩阵的乘法

观察下面两组方程

y 1 = a 11 x 1 + a 12 x 2 + a 13 x 3 y 2 = a 21 x 1 + a 22 x 2 + a 23 x 3 {y_1 = a_{11}x_1 + a_{12}x_2 + a_{13}x3 \\y_2= a_{21}x_1 + a_{22}x_2 + a_{23}x3} y1=a11x1+a12x2+a13x3y2=a21x1+a22x2+a23x3

x 1 = b 11 t 1 + b 12 t 2 x 2 = b 21 t 1 + b 22 t 2 x 3 = b 31 t 1 + b 32 t 2 x_1 = b_{11}t_1 + b_{12}t2\\x_2 = b_{21}t1 + b_{22}t2\\x_3 = b_{31}t_1 + b_{32}t2 x1=b11t1+b12t2x2=b21t1+b22t2x3=b31t1+b32t2

能得出:

y 1 = ( a 11 b 11 + a 12 b 21 + a 13 b 31 ) t 1 + ( a 11 b 12 + a 12 b 12 + a 13 b 32 t 2 ) y 2 = ( a 21 b 11 + a 22 b 21 + a 23 b 31 ) t 1 + ( a 21 b 12 + a 22 b 22 + a 23 b 32 ) t 2 y_1 = (a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31})t_1 + (a_{11}b_{12} + a_{12}b_{12} + a_{13}b_{32}t_2)\\ y_2 = (a_{21}b_{11} + a_{22}b_{21}+a_{23}b_{31})t_1 + (a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32})t2 y1=(a11b11+a12b21+a13b31)t1+(a11b12+a12b12+a13b32t2)y2=(a21b11+a22b21+a23b31)t1+(a21b12+a22b22+a23b32)t2

上面两个关于 y 1 , y 2 y_1, y_2 y1,y2的方程组可以看做是两个矩阵的乘积:

[ a 11 a 12 a 13 a 21 a 22 a 23 ] [ b 11 b 12 b 21 b 22 b 31 b 32 ] = \left[\begin{matrix} a_{11}\qquad a_{12} \qquad a_{13} \\ a_{21}\qquad a_{22} \qquad a_{23} \end{matrix}\right] \left[\begin{matrix} b_{11}\qquad b_{12} \\ b_{21}\qquad b_{22} \\b_{31} \qquad b_{32} \end{matrix}\right] = [a11a12a13a21a22a23]b11b12b21b22b31b32=

[ a 11 b 11 + a 12 b 21 + a 13 b 31 a 11 b 12 + a 12 b 22 + a 13 b 32 a 21 b 11 + a 22 b 21 + a 23 b 31 a 21 b 12 + a 22 b 22 + a 23 b 32 ] \left[\begin{matrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} \qquad a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32}\\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} \qquad a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} \end{matrix}\right] [a11b11+a12b21+a13b31a11b12+a12b22+a13b32a21b11+a22b21+a23b31a21b12+a22b22+a23b32]

一般地, 有:

A = ( a i j ) m × s B = ( b i j ) s × n C = A B = ( C i j ) m × n A=(a_{ij})_{m\times s} \qquad B=(b_{ij})_{s \times n} \qquad C=AB=(C_{ij})_{m\times n} A=(aij)m×sB=(bij)s×nC=AB=(Cij)m×n

C m × n = A m × s B s × n C_{m\times n} = A_{m\times s}B_{s\times n} Cm×n=Am×sBs×n

A 与B满足什么条件能够相乘?

A的列数要和B的行数相同.

例1:

A = [ 1 1 − 1 − 1 ] B = [ 1 − 1 − 1 1 ] A=\left[\begin{matrix} 1\qquad 1\\ -1\qquad -1 \end{matrix}\right] \qquad B= \left[\begin{matrix} 1\qquad -1\\ -1\qquad 1 \end{matrix}\right] A=[1111]B=[1111]

A B , B A AB, BA AB,BA

A B = [ 0 0 0 0 ] B A = [ 2 2 − 2 − 2 ] AB= \left[\begin{matrix} 0\qquad 0\\ 0\qquad 0 \end{matrix}\right] \qquad BA=\left[\begin{matrix} 2\qquad 2\\ -2\qquad -2 \end{matrix}\right] AB=[0000]BA=[2222]

显然 A B ≠ B A AB \neq BA AB=BA

矩阵乘法不满足交换律.

例2:

A = [ 2 4 − 3 − 6 ] B = [ − 1 4 2 − 1 ] C = [ 1 0 1 1 ] A=\left[\begin{matrix} 2\qquad 4\\ -3\qquad -6 \end{matrix}\right] \qquad B= \left[\begin{matrix} -1\qquad 4\\ 2\qquad -1 \end{matrix}\right] \qquad C=\left[\begin{matrix} 1\qquad 0\\ 1\qquad 1 \end{matrix}\right] A=[2436]B=[1421]C=[1011]

A B , A C AB, AC AB,AC

A B = [ 6 4 − 9 − 6 ] A C = [ 6 4 − 9 − 6 ] AB=\left[\begin{matrix} 6\qquad 4\\ -9\qquad -6 \end{matrix}\right] \qquad AC=\left[\begin{matrix} 6\qquad 4\\ -9\qquad -6 \end{matrix}\right] AB=[6496]AC=[6496]

⇒ A B = A C \Rightarrow AB=AC AB=AC 但是 B ≠ C B \neq C B=C

总结: 矩阵乘法和实数乘法有一下三点不同:

  1. 矩阵乘法不满足交换律.
  2. 矩阵乘法不满足消去律.
  3. 矩阵乘法有非零的零因子.

矩阵乘法满足下面的规律:

  1. ( A B ) C = A ( B C ) (AB)C=A(BC) (AB)C=A(BC)
  2. A ( B + C ) = A B + A C ( B + C ) A = B A + C A A(B+C)=AB +AC\\(B+C)A = BA + CA A(B+C)=AB+AC(B+C)A=BA+CA
  3. k ( A B ) = ( k A ) B = A ( k B ) k(AB)=(kA)B=A(kB) k(AB)=(kA)B=A(kB)
  4. E m A m × n = A = A m × n E n E_mA_{m \times n} =A = A_{m\times n}E_n EmAm×n=A=Am×nEn

练习: a 1 . . . a n ≠ 0 , 对 角 阵 A = [ a 1 ⋱ a n ] , B = [ 1 a 1 ⋱ 1 a n ] a_1...a_n \neq0, 对角阵A=\left[\begin{matrix} a_1 \qquad\\ \quad \qquad \ddots \qquad \\ \qquad \qquad a_n \end{matrix}\right],B= \left[\begin{matrix} \frac{1}{a_1} \qquad\\ \quad \qquad \ddots \qquad \\ \qquad \qquad \frac{1}{a_n} \end{matrix}\right] a1...an=0,A=a1an,B=a11an1

AB=? E n E_n En

方阵的正整数幂

A k = A A ⋯ A A^k = AA\cdots A Ak=AAA

规定 A 0 = E A^0=E A0=E(和实数里面规定任何数的0次方等于1一样的意思)

A k + l = A k A l A^{k+l} = A^kA^l Ak+l=AkAl

注意: ( A B ) k ≠ A k B k (AB)^k \neq A^kB^k (AB)k=AkBk, 请思考为什么.

矩阵的转置

就是把矩阵的行变成列, 列变成行.

A = [ a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋯ ⋯ ⋯ ⋯ a m 1 a m 2 … a m n ] A=\left[\begin{matrix} a_{11}\qquad a_{12} \qquad \ldots \qquad a_{1n}\\ a_{21}\qquad a_{22} \qquad \ldots \qquad a_{2n} \\ \cdots \cdots \cdots \cdots\\ a_{m1} \qquad a_{m2} \qquad \ldots \qquad a_{mn}\end{matrix}\right] A=a11a12a1na21a22a2nam1am2amn

A T = [ a 11 a 21 … a m 1 a 12 a 22 … a m 2 ⋯ ⋯ ⋯ ⋯ a 1 n a 2 n … a m n ] A^T=\left[\begin{matrix} a_{11}\qquad a_{21} \qquad \ldots \qquad a_{m1}\\ a_{12}\qquad a_{22} \qquad \ldots \qquad a_{m2} \\ \cdots \cdots \cdots \cdots\\ a_{1n} \qquad a_{2n} \qquad \ldots \qquad a_{mn}\end{matrix}\right] AT=a11a21am1a12a22am2a1na2namn

思考, 对角阵的转置是什么?

转置的运算规律

( A T ) T = A ( A + B ) T = A T + B T ( k A ) T = k A T (A^T)^T=A\\(A+B)^T=A^T+B^T\\(kA)^T=kA^T (AT)T=A(A+B)T=AT+BT(kA)T=kAT

思考, ( A B ) T = ? (AB)^T=? (AB)T=?

答案: ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT, 请记住并证明这个结论.

这个公式可以推广: ( A B C ) T = C T B T A T (ABC)^T= C^TB^TA^T (ABC)T=CTBTAT

对称阵和反对称阵

如果一个矩阵, 它的转置和它本身相等, 我们就把这个矩阵叫做对称阵.

对 称 阵 : A T = A , a i j = a j i 对称阵: A^T=A, a_{ij}=a_{ji} :AT=A,aij=aji

反 对 称 阵 : A T = − A , a i j = − a j i 且 , a i i = 0 反对称阵: A^T=-A, a_{ij}=-a_{ji}且,a_{ii}= 0 :AT=A,aij=aji,aii=0

对称阵和反对称阵都是方阵.请思考为什么?

A A T , A T A , A + A T AA^T, A^TA, A+A^T AAT,ATA,A+AT这些矩阵都是对称阵,思考为什么?

A − A T A - A^T AAT是反对称阵.

请证明 A A T 是 对 称 阵 AA^T是对称阵 AAT.

请证明 A − A T A - A^T AAT是反对称阵.

显然: A = A + A T 2 + A − A T 2 A=\frac{A+A^T}{2} + \frac{A - A^T}{2} A=2A+AT+2AAT

任何方阵都可以分解为对称阵和反对称阵的和.

矩阵的初等变换

以下三种变换分别称为矩阵的第一, 第二, 第三种初等变换:

  1. 对换矩阵中的第 i , j i,j i,j两行(列)的位置, 记做 r i j ( c i j ) 或 r_{ij}(c_{ij})或 rij(cij) r i < − > r j ( c i < − > c j ) r_i <->r_j (c_i <-> c_j) ri<>rj(ci<>cj)
  2. 用非零常数k乘第 i i i行(列), 记做 k r i ( k c i ) kr_i(kc_i) kri(kci)
  3. 用矩阵的第 j j j行(列)乘以常数 k k k后加到第 i i i行(列)对应元素上去, 记做 r i + k r j ( c i + k c j ) r_i + kr_j(c_i + kc_j) ri+krj(ci+kcj)

矩阵初等变换是线性代数中非常重要的一个工具.对应求解方程组中使用的消元法.

初等变换可以简化矩阵, 比如可以将矩阵转化为梯形阵.

比如: A = [ 2 − 3 8 2 2 12 − 2 12 1 3 1 4 ] A=\left[\begin{matrix} 2 \qquad -3 \qquad 8 \qquad 2\\ 2 \qquad 12 \qquad -2 \qquad 12 \\1 \qquad 3 \qquad 1 \qquad 4 \end{matrix}\right] A=23822122121314

对A做初等变换, 第一行和第三行互换即 r 1 < − > r 3 r_1<->r_3 r1<>r3,然后第一行乘-2,分别和第二行和第三行相加,即

r 2 − 2 r 1 , r 3 − 2 r 1 r_2-2r_1, r_3-2r_1 r22r1,r32r1

A = [ 2 − 3 8 2 2 12 − 2 12 1 3 1 4 ] − > [ 1 3 1 4 2 12 − 2 12 2 − 3 8 2 ] − > [ 1 3 1 4 0 6 − 4 4 0 − 9 6 − 6 ] − > [ 1 3 1 4 0 3 − 2 2 0 − 3 2 − 2 ] A=\left[\begin{matrix} 2 \qquad -3 \qquad 8 \qquad 2\\ 2 \qquad 12 \qquad -2 \qquad 12 \\1 \qquad 3 \qquad 1 \qquad 4 \end{matrix}\right] -> \left[\begin{matrix} 1 \qquad 3 \qquad 1 \qquad 4\\ 2 \qquad 12 \qquad -2 \qquad 12 \\2 \qquad -3 \qquad 8 \qquad 2 \end{matrix}\right] -> \left[\begin{matrix} 1 \qquad 3 \qquad 1 \qquad 4\\ 0 \qquad 6 \qquad -4 \qquad 4 \\0 \qquad -9 \qquad6 \qquad -6 \end{matrix}\right] -> \left[\begin{matrix}1 \qquad 3 \qquad 1 \qquad 4\\ 0 \qquad 3 \qquad -2 \qquad 2 \\0 \qquad -3 \qquad2 \qquad -2\end{matrix}\right] A=23822122121314>13142122122382>131406440966>131403220322

− > [ 1 3 1 4 0 3 − 2 2 0 0 0 0 ] -> \left[\begin{matrix}1 \qquad 3 \qquad 1 \qquad 4\\ 0 \qquad 3 \qquad -2 \qquad 2 \\0 \qquad 0 \qquad0 \qquad 0\end{matrix}\right] >131403220000

注意: 利用初等变换讲A化为B, A与B之间用记号 − > , 或 者 ≅ ->,或者\cong >,连接

练习: 用初等变换将一下矩阵化为梯形阵.

A = [ 1 0 2 0 2 0 − 1 0 3 ] B = [ 1 2 − 2 3 4 − 3 3 12 3 − 1 1 9 ] A=\left[\begin{matrix}1 \qquad 0 \qquad 2\\ 0 \qquad 2 \qquad 0 \\-1 \qquad 0 \qquad3 \end{matrix}\right] \qquad B=\left[\begin{matrix}1 \qquad 2 \qquad -2 \qquad 3\\4 \qquad -3 \qquad 3 \qquad 12 \\3 \qquad -1 \qquad1 \qquad 9\end{matrix}\right] A=102020103B=1223433123119

A = [ 1 − 2 1 0 0 2 − 8 8 − 4 5 9 − 9 ] B = [ 3 − 4 5 2 − 3 1 3 − 5 − 1 ] C = [ 0 1 − 4 8 2 − 3 2 1 5 − 8 7 1 ] A=\left[\begin{matrix}1 \qquad -2 \qquad 1 \qquad 0\\ 0 \qquad 2 \qquad -8 \qquad 8 \\-4 \qquad 5 \qquad9 \qquad -9 \end{matrix}\right] \qquad B=\left[\begin{matrix}3 \qquad -4 \qquad 5\\ 2 \qquad -3 \qquad 1 \\3 \qquad -5 \qquad -1 \end{matrix}\right] \qquad C=\left[\begin{matrix}0 \qquad 1 \qquad -4 \qquad 8\\ 2 \qquad -3 \qquad 2 \qquad 1 \\5 \qquad -8 \qquad7 \qquad 1\end{matrix}\right] A=121002884599B=345231351C=014823215871

矩阵的等价

对矩阵A实行有限次初等变换得到矩阵B, 则称矩阵A与B等价, 记做 A ≅ B A\cong B AB A → B A \rightarrow B AB

等价的矩阵具有自反性, 对称性和传递性.即:

A ≅ A ; A ≅ B ⇒ B ≅ A ; A ≅ B , B ≅ C ⇒ A ≅ C A \cong A; \qquad A \cong B \Rightarrow B \cong A; \qquad A \cong B, B \cong C \Rightarrow A \cong C AA;ABBA;AB,BCAC

A ≅ [ 1 0 ⋯ 0 0 ⋯ 0 0 1 ⋯ 0 0 ⋯ 0 ⋮ ⋮ ⋱ ⋮ ⋮ ⋯ ⋮ 0 0 ⋯ 1 0 ⋯ 0 0 0 ⋯ 0 0 ⋯ 0 ⋮ ⋮ ⋱ ⋮ ⋮ ⋯ ⋮ 0 0 ⋯ 0 0 ⋯ 0 ] ( A 的 等 价 标 准 型 ) A \cong \left[\begin{matrix} 1\qquad 0 \qquad \cdots \qquad 0 \qquad 0 \qquad \cdots \qquad 0\\ 0\qquad 1 \qquad \cdots \qquad 0 \qquad 0 \qquad \cdots \qquad 0\\ \vdots \qquad \vdots \qquad \ddots \qquad \vdots \qquad \vdots \qquad \cdots \qquad \vdots \\ 0\qquad 0 \qquad \cdots \qquad 1 \qquad 0 \qquad \cdots \qquad 0\\0\qquad 0 \qquad \cdots \qquad 0 \qquad 0 \qquad \cdots \qquad 0 \\ \vdots \qquad \vdots \qquad \ddots \qquad \vdots \qquad \vdots \qquad \cdots \qquad \vdots \\0\qquad 0 \qquad \cdots \qquad 0 \qquad 0 \qquad \cdots \qquad 0 \end{matrix}\right](A的等价标准型) A1000001000001000000000000(A)

定理: 任何一个矩阵都有等价标准型

练习: 把上面的矩阵通过初等变换转化为它们的等价标准型.

思考: 等价标准型中1的个数和什么因素有关.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值