线性代数-基础知识

可逆矩阵

百度百科

定义

在这里插入图片描述

性质

在这里插入图片描述

常用方法

在这里插入图片描述

相似矩阵

定义 A , B A,B A,B都是 n n n阶矩阵,若有可逆矩阵 P P P,使
P − 1 A P = B P^{-1}AP = B P1AP=B
则称 B B B A A A的相似矩阵,或说矩阵 A A A B B B相似,对 A A A进行运算 P − 1 A P P^{-1}AP P1AP称为对 A A A进行相似变换,可逆矩阵 P P P称为把 A A A变成 B B B的相似变换矩阵。

定理1 n n n阶矩阵 A A A B B B相似,则 A A A B B B的特征多项式相同,从而 A A A B B B的特征值亦相同.

推论 n n n阶矩阵 A A A与对角阵
Λ = [ λ 1 λ 2 ⋱ λ n ] \Lambda = \begin{bmatrix} \lambda _1& && \\ &\lambda _2&&\\ &&\ddots&&\\ &&&\lambda _n \end{bmatrix} Λ=λ1λ2λn
相似,则 λ 1 , … , λ 2 , λ n \lambda _1 ,\dots,\lambda _2,\lambda _n λ1,,λ2,λn即是 A A A n n n个特征值。

定理2 n n n阶矩阵 A A A与对角阵相似(即 A A A能对角化)的充要条件是 A A A n n n个线性无关的特征向量。

推论 如果 n n n阶矩阵 A A A n n n个特征值互不相等,则A与对角阵相似(即 A A A能对角化)。

把矩阵 A A A对角化步骤

  1. 判断矩阵 A A A是否为方阵;
  2. 判断矩阵是否为可逆矩阵;
  3. 利用特征分解求特征值和特征向量;
  4. 将特征向量进行单位化

注意

  • n n n阶矩阵含有 n n n个互不相同的特征值时,则该矩阵必然可以对角化。
  • 实对称矩阵必然可以对角化。

对称矩阵

正定矩阵

来自百度百科

在线性代数里,正定矩阵(positive definite matrix),也叫正定阵。正定矩阵在实数域上是对称矩阵。在复数域上是厄米特矩阵(共轭对称)。因为正定矩阵在定义的时候就是要在厄米特矩阵的域内(实数域上是对称矩阵)。

定义:

  1. 广义:设 M M M n n n阶方阵,如果对于任何非零向量 z z z,都有 z T M z > 0 z^TMz >0 zTMz>0,其中 z T z^T zT表示 z z z的转置,此时就称矩阵 M M M为正定阵。
  2. 狭义:一个 n n n阶的实对称矩阵 M M M是正定的的条件是当且仅当对于所有的非零实系数向量 z z z,都有 z T M z z^TMz zTMz> 0。其中 z T z^T zT表示 z z z的转置。

对称正定阵

定义: A ∈ R n × n A\in R^{n \times n} ARn×n,若 A = A T A = A^T A=AT,对于任意的非零 X ∈ R n X \in R^n XRn,都有 X T A X > 0 X^TAX >0 XTAX>0,则称 A A A为对称正定阵。

Hermitian正定阵

定义: A ∈ R n × n A\in R^{n \times n} ARn×n,若 ( A ∗ ) T = A (A^*)^T = A (A)T=A或者 A H = A A^H=A AH=A,其中 A ∗ A^* A表示为 A A A的共轭阵,对于非零 X ∈ C n X\in C^n XCn,都有 X H A X > 0 X^HAX>0 XHAX>0,则称 A A A为Hermitian正定矩阵。

正定阵的性质:

  • 正定矩阵的行列式恒为正
  • 实对称矩阵 A A A正定当且仅当A与单位矩阵合同
  • A A A是正定矩阵,则A的逆矩阵也是正定矩阵
  • 两个正定矩阵的和是正定矩阵
  • 正实数与正定矩阵的乘积是正定矩阵

对于 n n n阶实对称矩阵的等价命题:

  • A A A是正定矩阵
  • A A A的一切顺序主子式均为正
  • A A A的一切主子式均为正
  • A A A的特征值均为正
  • 存在实可逆矩阵 C C C,使 A = C − 1 C A=C^{-1}C A=C1C
  • 存在秩为 n n n m × n m\times n m×n实矩阵 B B B,使 A = B − 1 B A=B^{-1}B A=B1B
  • 存在主对角线元素全为正的实三角矩阵 R R R,使 A = R − 1 R A=R^{-1}R A=R1R

对称矩阵 A A A正定性的判别方法

  • 求出 A A A的所有特征值。若 A A A的特征值均为正数,则 A A A是正定的;若A的特征值均为负数,则 A A A为负定的。
  • 计算 A A A的各阶主子式。若 A A A的各阶主子式均大于零,则 A A A是正定的;若 A A A的各阶主子式中,奇数阶主子式为负,偶数阶为正,则A为负定的。

单位正交矩阵

在正交矩阵的基础上,矩阵的每一个向量都是单位向量的矩阵。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值