论文笔记Multi-phase Liver Tumor Segmentation with Spatial Aggregation and Uncertain Region Inpainting

基于空间聚集和不确定区域修复的多期肝肿瘤分割

ELSEVIER  Neural Networks 2021

       多阶段特征融合策略可分为三类:输入级融合(ILF)方法、决策级融合(DLF)方法和特征级融合(FLF)方法。在这些方法中,特征级融合FLF方法被证明可以获得最佳性能,因为它们利用了多级交叉相位特征。例如:吴等人提出了一种MW-UNet,它通过使用可训练系数对来自U-Net的隐藏层的特征进行加权来集成不同的相位。徐等人提出了一种基于 ResNet的PA-ResSeg,利用通道注意机制对不同阶段的特征进行重新加权。然而,已知的特征级融合FLF方法仅仅关注相位方向或通道方向的相位间关系,而忽略了不同相位之间的像素方向的对应关系,从而导致信息聚集中的冗余和低效率。特征融合不充分甚至会在空间位置引入干扰因素。

       此外,与其他分割任务一样,现有多阶段LiTS方法的性能受到不确定区域分割的影响,也就是说,分割结果通常呈现一些模糊或不明确的区域(尤其是肿瘤边界),这个问题主要是由(1)上下采样操作中的高频信息丢失(2)肿瘤和周围环境之间的低对比度引起的。

(1)空间聚合模块SAM,以确保足够的相间相互作用。该模块挖掘宏观和局部相位间的关系,并为每个相位生成像素级响应图。然后,根据响应图逐像素地调制和融合多相位特征。

(2)不确定区域修复模块URIM来细化不确定和模糊区域,有助于获得细粒度的肿瘤边界分割;关键思想是使用分割分数高的像素来修复周围的不确定像素。为此,引入了局部置信卷积(LC-Conv)运算,使不确定像素吸收相邻的鉴别特征。经过多次LC-Conv运算后,采用调整后的特征进行最终预测。

(3)在多相MPCT- FLLs数据集上验证了方法。

相互引导编码器部分以ResNeXt-50为主干,它使用两个路径,即PV流和ART流,来提取特定相位的特征。解码器部分将来自编码器的四级聚集特征作为输入,并产生初始概率图。为了合并多级特征,使用双线性插值对所有输入进行上采样,并通过级联和卷积进行融合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值