SegFormer

SegFormer结合了Transformer和轻量级MLP解码器,实现语义分割。它采用无位置编码的分层Transformer编码器,避免了位置编码的缺点,同时使用MLP解码器融合不同层信息。实验显示,SegFormer在效率和效果上优于现有方法,且在多种数据集上表现出色。
摘要由CSDN通过智能技术生成

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers

在这里插入图片描述

在这里插入图片描述

Abstract

方法

  • Transformers与轻量级多层感知器(MLP)统一起来

吸引人的特点

    1. 分层结构的transformers编码器,并且不需要位置编码
    • 从而避免了位置编码的内插。
      当测试分辨率与训练分辨率不同时,位置编码会导致性能下降。

      • 位置编码的缺点;
  • 2.避免使用复杂的解码器,MLP聚合了不同层的信息

    • 结合了局部和全局注意力来呈现强大的表征

效果

  • 网络更小,效果也佳

    • 定量评估数据集

      • Cityscapes validation set
      • Cityscapes-C
      • ADE20K

Code

  • github.com/NVlabs/SegFormer.

1 Introduction

开创性的工作

  • FCN

语义分割的两条主线

  • 设计主干

    • 主干的演变极大地推动了语义分割的性能边界
  • 结构化预测问题

    • 设计模块和操作,有效捕捉上下文信息

      • 代表性例子:空洞卷积,增加了感受野

transformer引入计算机视觉

  • ViT

    • 图像分类
  • SETR

    ### 如何配置SegFormer运行环境 #### 创建虚拟环境并激活 为了隔离项目依赖,建议创建一个专门用于SegFormer项目的虚拟环境。这可以通过Python自带的`venv`模块完成。 ```bash python -m venv segformer-env source segformer-env/bin/activate # Linux 或 macOS 用户 # 对于 Windows 用户应使用如下命令激活虚拟环境: segformer-env\Scripts\activate ``` 此操作能够确保所安装的所有包仅影响当前项目而不干扰其他Python项目[^3]。 #### 安装PyTorch及相关依赖项 在准备具体框架之前,需依据GPU型号选择合适的PyTorch版本进行安装。对于拥有NVIDIA GPU的用户来说,推荐采用CUDA加速版PyTorch以提高性能;而对于无GPU支持的情况,则可以选择CPU-only版本。安装完成后还需确认已成功加载所需硬件资源。 #### 下载SegFormer源码 获取官方发布的最新稳定版本是至关重要的一步。可以从GitHub仓库克隆最新的SegFormer代码: ```bash git clone https://github.com/NVlabs/SegFormer.git cd SegFormer ``` 上述指令将把整个项目复制到本地计算机上以便进一步开发或测试[^4]。 #### 修改训练脚本参数设置 针对特定应用场景调整模型训练参数也是必不可少的一环。通过编辑位于根目录下的`train.py`文件中的解析器选项来指定自定义配置路径以及工作区位置等重要信息。 ```python parser.add_argument( '--config', default="/data/programs/SegFormer-master/local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py", help='train config file path' ) parser.add_argument( '--work-dir', default='/data/programs/SegFormer-master/work_dir/logs', help='the dir to save logs and models' ) ``` 这段代码片段展示了如何设定默认配置文件的位置和保存日志与模型的工作空间[^1]。 #### 解决跨平台兼容性挑战 值得注意的是,在不同操作系统之间切换可能会遇到一些棘手的问题——尤其是在Windows平台上部署时。由于MMCV-full库的存在使得部分功能实现变得复杂化,因此寻找替代方案可能是更优的选择之一。例如,利用社区贡献者提供的简化版本绕过原生依赖关系从而降低难度[^2]。
    评论 2
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值