SegFormer

SegFormer结合了Transformer和轻量级MLP解码器,实现语义分割。它采用无位置编码的分层Transformer编码器,避免了位置编码的缺点,同时使用MLP解码器融合不同层信息。实验显示,SegFormer在效率和效果上优于现有方法,且在多种数据集上表现出色。
摘要由CSDN通过智能技术生成

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers

在这里插入图片描述

在这里插入图片描述

Abstract

方法

  • Transformers与轻量级多层感知器(MLP)统一起来

吸引人的特点

    1. 分层结构的transformers编码器,并且不需要位置编码
    • 从而避免了位置编码的内插。
      当测试分辨率与训练分辨率不同时,位置编码会导致性能下降。

      • 位置编码的缺点;
  • 2.避免使用复杂的解码器,MLP聚合了不同层的信息

    • 结合了局部和全局注意力来呈现强大的表征

效果

  • 网络更小,效果也佳

    • 定量评估数据集

      • Cityscapes validation set
      • Cityscapes-C
      • ADE20K

Code

  • github.com/NVlabs/SegFormer.

1 Introduction

开创性的工作

  • FCN

语义分割的两条主线

  • 设计主干

    • 主干的演变极大地推动了语义分割的性能边界
  • 结构化预测问题

    • 设计模块和操作,有效捕捉上下文信息

      • 代表性例子:空洞卷积,增加了感受野

transformer引入计算机视觉

  • ViT

    • 图像分类
  • SETR

    Segformer是一种用于图像分割任务的深度学习模型,它是在Transformer架构的基础上进行改和应用的。Segformer通过将图像分割任务转为像素级分类问题,实现了对图像中每个像素的分类,从而达到图像分割的目的。 Segformer的训练过程通常包括以下几个步骤: 1. 数据准备:首先需要准备用于训练的图像数据集和对应的标签。通常情况下,图像数据集会被划分为训练集、验证集和测试集。 2. 模型构建:Segformer模型是基于Transformer架构进行改进的,因此需要构建一个包含Transformer编码器和解码器的网络结构。编码器用于提取图像特征,解码器用于将特征映射到像素级别的分类结果。 3. 损失函数定义:为了训练Segformer模型,需要定义一个适合图像分割任务的损失函数。常用的损失函数包括交叉熵损失函数、Dice损失函数等。 4. 模型训练:使用准备好的数据集和定义好的损失函数,通过反向传播算法来更新模型参数,使得模型能够逐渐学习到更好的特征表示和分类能力。通常使用梯度下降算法来进行参数更新。 5. 模型评估:在训练过程中,可以使用验证集来评估模型的性能,常用的评估指标包括像素准确率、平均交并比(mIoU)等。 6. 模型调优:根据评估结果,可以对模型进行调优,例如调整学习率、增加训练数据、调整网络结构等。 7. 模型测试:在训练完成后,可以使用测试集对模型进行测试,评估其在未见过的数据上的性能。
    评论 2
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值