Task 08 Bagging的原理和案例分析
与投票法不同的是,Bagging不仅仅集成模型最后的预测结果,同时采用一定策略来影响基模型训练,保证基模型可以服从一定的假设。此时不再希望各个模型之间具有较大的差异性,在实际操作中的模型却往往是同质的,因此一个简单的思路是通过不同的采样增加模型的差异性。
自助采样(bootstrap)
Bagging的核心在于自助采样(bootstrap)这一概念,即有放回的从数据集中进行采样,也就是说,同样的一个样本可能被多次进行采样。首先我们随机取出一个样本放入采样集合中,再把这个样本放回初始数据集,重复K次采样,最终我们可以获得一个大小为K的样本集合。同样的方法, 我们可以采样出T个含K个样本的采样集合,然后基于每个采样集合训练出一个基学习器,再将这些基学习器进行结合,这就是Bagging的基本流程。
- 对回归问题的预测是通过预测取平均值来进行的。
- 对于分类问题的预测是通过对预测取多数票预测来进行的。
Bagging方法之所以有效,是因为每个模型都是在略微不同的训练数据集上拟合完成的,这又使得每个基模型之间存在略微的差异,使每个基模型拥有略微不同的训练能力。Bagging同样是一种降低方差的技术,因此它在不剪枝决策树、神经网络等易受样本扰动的学习器上效果更加明显。在实际的使用中,加入列采样的Bagging技术对高维小样本往往有神奇的效果。
案例分析
Sklearn: BaggingRegressor 与 BaggingClassifier 默认基模型是树模型
这里的树模型一般指决策树,它是一种树形结构,树的每个非叶子节点表示对样本在一个特征上的判断,节点下方的分支代表对样本的划分。决策树的建立过程是一个对数据不断划分的过程,每次划分中,首先要选择用于划分的特征,之后要确定划分的方案(类别/阈值)。我们希望通过划分,决策树的分支节点所包含的样本“纯度”尽可能地高。节点划分过程中所用的指标主要是信息增益和GINI系数。
所以这里和决策树的实现过程很类似。略。
Bagging的一个典型应用是随机森林。顾名思义,“森林”是由许多“树”bagging组成的。在具体实现上,用于每个决策树训练的样本和构建决策树的特征都是通过随机采样得到的,随机森林的预测结果是多个策树输出的组合(投票)。
参考资料:
datawhale集成学习(中)