自助法以自助采样法为基础,给定包含m个样本的数据集D,我们对它进行采样产生数据集D';每次随机从D中挑选一个赝本,将其拷贝放入D',然后再将该样本放回初始数据集D中,使得该样本在下次采样时仍有可能被采到;这个过程重复执行m次后,就得到了包含m个样本的数据集D',这就是自助采样的结果。
自助法在数据集较小、难以有效划分训练/测试集时很有用;此外,自助法能从初始数据集中产生多个不同的训练集,这对集成学习等方法有很大的好处。
然而,自助法产生的数据集改变了初始数据集的分布,这会引入估计偏差。
自助法以自助采样法为基础,给定包含m个样本的数据集D,我们对它进行采样产生数据集D';每次随机从D中挑选一个赝本,将其拷贝放入D',然后再将该样本放回初始数据集D中,使得该样本在下次采样时仍有可能被采到;这个过程重复执行m次后,就得到了包含m个样本的数据集D',这就是自助采样的结果。
自助法在数据集较小、难以有效划分训练/测试集时很有用;此外,自助法能从初始数据集中产生多个不同的训练集,这对集成学习等方法有很大的好处。
然而,自助法产生的数据集改变了初始数据集的分布,这会引入估计偏差。