自助法

      自助法以自助采样法为基础,给定包含m个样本的数据集D,我们对它进行采样产生数据集D';每次随机从D中挑选一个赝本,将其拷贝放入D',然后再将该样本放回初始数据集D中,使得该样本在下次采样时仍有可能被采到;这个过程重复执行m次后,就得到了包含m个样本的数据集D',这就是自助采样的结果。

      自助法在数据集较小、难以有效划分训练/测试集时很有用;此外,自助法能从初始数据集中产生多个不同的训练集,这对集成学习等方法有很大的好处。

      然而,自助法产生的数据集改变了初始数据集的分布,这会引入估计偏差。

Sklearn自助法是一种在机器学习中常用的非参数统计方法,用于解决样本不平衡和过拟合问题。它的全称是Bootstrap,是基于自助采样(bootstrap sampling)的一种技术。 在使用Sklearn自助法时,我们首先从原始数据集中进行有放回地随机抽样,形成一个与原始数据集大小相同的新数据集,该数据集称为自助样本(bootstrap sample)。由于是有放回地抽样,因此原始数据集中的一些样本可能被多次抽到,而一些样本可能没有被抽到。 通过重复这个自助采样的过程,我们可以得到多个不同的自助样本。然后,我们可以针对每个自助样本训练一个模型,并得到对应的预测结果。最后,我们可以通过对这些预测结果进行聚合,例如取平均值或投票等方式,来得到最终的预测结果。 Sklearn中的BaggingRegressor和BaggingClassifier就是使用了自助法的集成学习方法。它们通过并行地训练多个基模型,并使用自助法来生成不同的训练数据集,以提高模型的稳定性和泛化能力。 使用Sklearn自助法可以有效地减小模型的方差,并且能够应对样本不平衡和过拟合等问题。然而,自助法也会引入一定的偏差,因为一些样本可能在自助样本中被多次抽到,而另一些样本则没有被抽到。 总的来说,Sklearn自助法是一种强大的工具,可以用于改善模型的性能,特别是在处理样本不平衡和过拟合问题时。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值