随机微分方程与 Ito Lemma 的关系

一、随机微分方程的由来

随机微分方程是我们研究随机现象的重要数学工具,我们可以通过一个简单的例子来进行说明。

例1(The Vasicek interest rate model)

VIR 模型是借贷利率的标准模型,它描述的是瞬时利率(instantaneous interest rate, r t r_t rt)在均值( μ \mu μ )附近上下波动的现象,该模型的数学描述是:
d r t = c [ μ − r t ] d t + σ d B t , t ∈ [ 0 , T ] (1) dr_t=c[\mu-r_t]dt+\sigma dB_t,\quad t\in [0,T]\tag{1} drt=c[μrt]dt+σdBt,t[0,T](1)
其中 [ μ − r t ] [\mu-r_t] [μrt] 表示 r t r_t rt 偏离 μ \mu μ 的程度,c 是反映回归速度的一个参数,而 B t B_t Bt 表示标准布朗运动, σ \sigma σ 反映的是随机波动的波动性,该数学模型很好地反映了: r t r_t rt reverts to the mean μ \mu μ. (1)也可以表示为积分形式:
r t = r 0 + c ∫ 0 t [ μ − r s ] d s + σ ∫ 0 t d B s (2) r_t=r_0 + c\int_0^t[\mu-r_s]ds+\sigma\int_0^t dB_s\tag{2} rt=r0+c0t[μrs]ds+σ0tdBs(2)
这是一个典型的线性随机微分方程的求解过程,其目的是要找到满足(1)或(2)的随机过程。

二、随机微分方程的求解

随机微分方程的求解,总体上有两种方法:

1、公式法

2、数值求解方法

本文主要叙述的是“公式法”,我们通过该方法可以得到微分方程的显示解,即一个描述微分方程解的函数表达式。在求解的过程中,我们主要要利用的工具就是 Ito Lemma,它可以将随机微分方程转化为非随机微分方程,让求解过程绕开 Ito 积分难题。那什么是 Ito 积分呢?如下就是它的表达式:
I ( t ) = ∫ 0 t C s d B s 若 Cs 是布朗过程 Bs,则有: S n = ∑ i = 1 n B t i − 1 Δ i B I ( t ) = lim ⁡ n → ∞ S n = 1 2 ( B t 2 − t ) (3) I(t)=\int_0^t C_sdB_s \tag{3}\\ \text{若 Cs 是布朗过程 Bs,则有:}\\ S_n = \sum_{i=1}^n B_{t_{i-1}}\Delta_i B \\ I(t) = \lim_{n\rightarrow\infin} S_n = \frac 12(B_t^2-t) I(t)=0tCsdBs Cs 是布朗过程 Bs,则有:Sn=i=1nBti1ΔiBI(t)=nlimSn=21(Bt2t)(3)
Ito 积分的结果实质上是一个随机过程,该积分有四个性质:

1、The Ito stochastic integral has expectation zero.

2、The Ito stochastic integral satisfies the isometry property:
E ( ∫ 0 t C s d B s ) 2 = ∫ 0 t E C s 2 d s , t ∈ [ 0 , T ] (4) E\left( \int_0^t C_s dB_s \right)^2 = \int_0^t EC_s^2 ds,\quad t\in [0,T]\tag{4} E(0tCsdBs)2=0tECs2ds,t[0,T](4)
3、The Ito stochastic integral is linear, and it is linear on adjacent intervals

4、The process I ( C ) I(C) I(C) has continuous sample paths.

若积分的对象 C s C_s Cs 不是布朗过程,则该积分并不容易求出来,要解决随机微分方程求Ito积分的困难,就需要求助于 Ito Lemma,即 Ito 引理,该引理有4个形式:

1、简单版本
f ( B t ) − f ( B s ) = ∫ s t f ′ ( B x ) d B x + 1 2 ∫ s t f ′ ′ ( B x ) d B x (5) f(B_t)-f(B_s)=\int_s^t f'(B_x)dB_x + \frac 12\int_s^tf''(B_x)dB_x\tag{5} f(Bt)f(Bs)=stf(Bx)dBx+21stf(Bx)dBx(5)
2、扩展1
f ( t , B t ) − f ( s , B s ) = ∫ s t [ f 1 ( x , B x ) + 1 2 f 22 ( x , B x ) ] d x + ∫ s t f 2 ( x , B x ) d B x (6) f(t,B_t)-f(s,B_s)=\int_s^t \left[f_1(x,B_x)+\frac 12 f_{22}(x,B_x)\right] dx+\int_s^t f_2(x,B_x)dB_x\tag{6} f(t,Bt)f(s,Bs)=st[f

  • 3
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值