数学知识整理:布朗运动与伊藤引理 (Ito‘s lemma)

1 布朗运动

1.1 介绍

这个我记得是初中物理的知识。这里截取一段百度百科的说法,帮大家回顾一下:

        布朗运动是指悬浮在液体或气体中的微粒所做的永不停息的无规则运动。其因由英国植物学家布朗所发现而得名。

        作布朗运动的微粒的直径一般为10-5~10-3厘米,这些小的微粒处于液体或气体中时,由于液体分子的热运动,微粒受到来自各个方向液体分子的碰撞,当受到不平衡的冲撞时而运动,由于这种不平衡的冲撞,微粒的运动不断地改变方向而使微粒出现不规则的运动。布朗运动的剧烈程度随着流体的温度升高而增加。

 

1.2 随机过程表示

用公式表示,布朗运动可以表示成\Delta X=a\Delta t+b \epsilon \sqrt{\Delta t}, \epsilon \in N(0,1) 

  • 当Δt很小的时候,波动性b \epsilon \sqrt{\Delta t} 占主导
  • 当Δt很大的时候,确定性aΔt 占主导

2 伊藤引理

当X服从布朗运动的时候,求函数G(X,t)的全微分

2.1 X不是随机过程的情况(X不是关于t/Δt的函数)

此时X和t是两个独立的变量,那么函数G(X,t)的全微分如下:

\Delta G=\frac{\partial G}{\partial t}\Delta t+\frac{\partial G}{\partial X}\Delta X +\frac{\partial^2 G}{\partial t^2}(\Delta t)^2+\frac{\partial^2 G}{\partial X^2}(\Delta X)^2+\cdots

\approx \frac{\partial G}{\partial t}\Delta t+\frac{\partial G}{\partial X}\Delta X

2.2 X是随机过程的情况(X是关于t/Δt的函数)

以布朗运动为例,此时ΔX是Δt相关的函数

我们对G使用泰勒展开:\Delta G=\frac{\partial G}{\partial X} \Delta X +\frac{\partial G}{\partial t} \Delta t +\frac{1}{2}\frac{\partial^2G}{\partial X^2}(\Delta X)^2 +\frac{1}{2}\frac{\partial^2G}{\partial X\partial t}(\Delta X\Delta t) +\frac{1}{2}\frac{\partial^2G}{\partial t^2}(\Delta t)^2 +\cdots

这里ΔXΔt 和(\Delta t)^2肯定是比Δt的数量级要大的

我们重点看一下\frac{1}{2}\frac{\partial^2G}{\partial X^2}(\Delta X)^2

(\Delta X)^2=(a\Delta t+b \epsilon \sqrt{\Delta t})^2=a^2 (\Delta t)^2+2ab\epsilon \Delta t \sqrt{\Delta t}+b^2\epsilon^2 \Delta t \approx b^2\epsilon^2 \Delta t

\epsilon \in N(0,1)

所以E(\epsilon^2)=1 \rightarrow E(\epsilon^2 \Delta t)=\Delta t, Var(\epsilon^2 \Delta t)=(\Delta t)^2 Var(\epsilon^2)

也就是说\epsilon^2 \Delta t的方差很小,所以我们可以将其近似看成其期望值Δt

所以(\Delta X)^2 \approx b^2 \Delta t 

所以: 

\Delta G \approx \frac{\partial G}{\partial X} \Delta X +\frac{\partial G}{\partial t} \Delta t +\frac{1}{2}\frac{\partial^2G}{\partial X^2}(\Delta X)^2

= \frac{\partial G}{\partial X}\cdot (a\Delta t+b \epsilon \sqrt{\Delta t}) +\frac{\partial G}{\partial t} \Delta t +\frac{1}{2}\frac{\partial^2G}{\partial X^2}b^2 \Delta t

=(a \frac{\partial G}{\partial X}+\frac{\partial G}{\partial t} +\frac{1}{2}b^2\frac{\partial^2G}{\partial X^2})\Delta t +b \epsilon \frac{\partial G}{\partial X} \sqrt{\Delta t}

3 伊藤等距   Ito's isometry

I(t)=\int_0^t \Delta(s) \epsilon \sqrt{ds} ,那么Var[I(t)]=E[I(t^2)]=\int_0^t \Delta^2(s) ds

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值