从 Semi-Norms(准范数) 到 Norms(范数)

本文深入探讨了准范数(Semi-Norms)和范数(Norms)的区别,以及如何将准范数转化为范数。通过定义和实例解释了两者的性质,指出准范数在某些情况下无法满足唯一性,而范数则更为严格。通过构造商空间(Quotient Space),可以将满足特定条件的准范数空间转化为赋范空间,实现准范数到范数的转换。文章适合对线性代数和泛函分析感兴趣的读者。
摘要由CSDN通过智能技术生成

“什么是 Semi-Norms 什么是 Norms?它们之间有什么关系,为什么有了Norm还要有Semi-Norm呢?它们之间如何转换呢?”
以上是我在学习Semi-Norms(准范数)和 Norms(范数)时心中一直萦绕的问题,而且很久了,许多书都没讲清楚,直到我看到了【1】。在该书的第5章中有一节《Semi-Norms and Norms》,将它们之间的关系非常清楚地表述了出来,此处,我就自己的一些理解和翻译作文以小结之。

一、什么是Semi-Norms(准范数)和 Norms(范数)

Definition 1.1: (Semi-Norm and Norm)
Let V V V be a linear space over K = R K=\mathbb R K=R or over K = C K=\mathbb C K=C. A semi-norm on V V V is a function associating with every vector x ∈ V \mathbf x\in V xV a non-negative real number p ( x ) p(\mathbf x) p(x), the norm of x \mathbf x x, for which the following conditions hold:

  1. p ( α x ) = ∣ α ∣ p ( x ) p(\alpha \mathbf x)=\vert\alpha\vert p(\mathbf x) p(αx)=αp(x)
  2. p ( x + y ) ≤ p ( x ) + p ( y ) p(\mathbf x+\mathbf y)\le p(\mathbf x)+p(\mathbf y) p(x+y)p(x)+p(y)

If, moreover,

  1. p ( x ) = 0 p(\mathbf x) = 0 p(x)=0 implies x = 0 \mathbf x = 0 x=0, for all x ∈ V \mathbf x \in V xV,

then the function is called a norm on V V V, in which case we write ∥ x ∥ = p ( x ) \Vert \mathbf x \Vert = p(\mathbf x) x=p(x).
A linear space V V V together with a semi-norm on it is called a semi-normed space, and a linear space V V V together with a norm on it is called a normed space. It is common to refer to a (semi-)normed space V V V, leaving p ( x ) p(\mathbf x) p(x), or ∥ x ∥ \Vert \mathbf x \Vert x, implicit.
以上定义给出了准范数(Semi-Norms)和范数(Norms)的差别,即范数多了条件3,而准范数没有此要求。另外,上述定义是在线性空间中定义的,什么是线性空间(Linear Space)呢?所谓线性空间就是一个集合(Set),该集合包含零元(0),而且对矢量加和标量乘封闭,即:若 V V V是线性空间,则它必满足以下条件:

  1. 0 ∈ V 0\in V 0V
  2. ∀ x ∈ V , α ∈ K ⇒ α x ∈ V \forall \mathbf x\in V, \alpha\in K \Rightarrow \alpha\mathbf x\in V xV,αKαxV, where K = R K=\mathbb R K=R or K = C K=\mathbb C K=C
  3. ∀ x , y ∈ V ⇒ x + y ∈ V \forall \mathbf x,\mathbf y\in V \Rightarrow \mathbf x+\mathbf y\in V x,yVx+yV

范数是在线性空间上讨论的,这点很重要。

2、二者到底有什么差别

虽然通过上述定义的条件上可以看出两者的差别,但仍然对此差别没有什么感觉,我们来看一个例子:
Firstly, and quite trivially, any linear space V V V supports the trivial semi-norm given by p ( x ) = 0 p(\mathbf x) = 0 p(x)=0 for all x ∈ V \mathbf x \in V xV. Less trivially, consider the linear space C ( R , R ) C(\mathbb R, \mathbb R) C(R,R) of all continuous functions x : R → R x : \mathbb R → \mathbb R x:RR. The evaluation semi-norm is given by ∥ x ∥ = ∣ x ( 0 ) ∣ \Vert x\Vert = |x(0)| x=x(0).
[简译]
任意线性空间 V 都支撑由零函数( p ( x ) = 0 p(\mathbf x) = 0 p(x)=0 for all x ∈ V \mathbf x \in V xV)定义的准泛函,这是一个平凡的semi-norm。若要给出一个不那么平凡的semi-norm,我们考虑在R上的全体连续函数: C ( R , R ) C(\mathbb R, \mathbb R) C(R,R) of all continuous functions x : R → R x : \mathbb R → \mathbb R x:RR,它的每个元都是一个从实数域到实数域的函数(映射),该空间的semi-norm定义为: ∥ x ∥ = ∣ x ( 0 ) ∣ \Vert x\Vert = |x(0)| x=x(0),即每个元的范数等于该元(函数)在0点函数值的绝对值。

Indeed, and
∥ α x ∥ = ∣ α x ( 0 ) ∣ = ∣ α ∣ ∣ x ( 0 ) ∣ = ∣ α ∣ ∥ x ∥ ∥αx∥ = |αx(0)| = |α||x(0)| = |α|∥x∥ αx=αx(0)=αx(0)=αx
∥ x + y ∥ = ∣ x ( 0 ) + y ( 0 ) ∣ ≤ ∣ x ( 0 ) ∣ + ∣ y ( 0 ) ∣ = ∥ x ∥ + ∥ y ∥ ∥x + y∥ = |x(0) + y(0)| ≤ |x(0)| + |y(0)| = ∥x∥ + ∥y∥ x+y=x(0)+y(0)x(0)+y(0)=x+y.
Note that it is obvious that ∥ x ∥ = 0 ∥x∥ = 0 x=0 need not imply x = 0 x = 0 x=0, only that x ( 0 ) = 0 x(0) = 0 x(0)=0, so this semi-norm is not a norm.
[简译]
实际上, ∣ x ( 0 ) ∣ |x(0)| x(0) 满足semi-norm条件要求,是一个semi-norm。但 ∥ x ∥ = 0 ∥x∥ = 0 x=0 仅仅指出的是 x ( 0 ) = 0 x(0) = 0 x(0)=0,而这并不意味着 x = 0 x = 0 x=0,所以this semi-norm is not a norm

This construction is a typical one giving rise to semi-norms by ignoring some of the information embodied in the vectors (in this case, only x ( 0 ) x(0) x(0) is important for determining the semi-norm, all the other values of the function are ignored). Naturally, one may evaluate at any point, not just at x = 0 x = 0 x=0, and obtain a family of semi-norms.
[简译]上述的 semi-norm 只取了函数的一个点作为它的准范数,而忽略了其它点的值,由此观之,我们亦可选择其它点,并得到 a family of semi-norms.

We mention here that there is another natural way to obtain semi-norms. The space C ( [ a , b ] , R ) C([a, b], \mathbb R) C([a,b],R) is a space of continuous functions. If one wishes to consider non-continuous functions and to utilize the integral in order to obtain a norm similar in ?spirit to the L ∞ L_∞ L or L p L_p Lp norms on C ( [ a , b ] , R ) C([a, b], \mathbb R) C([a,b],R), then one encounters the following difficulty. It is well-known that for a non-continuous function x x x, it is possible that ∫ d t ⋅ ∣ x ( t ) ∣ = 0 \int dt\cdot|x(t)|=0 dtx</

  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值