Norms in Matrix and Vector

Norms in Vector

P-norm

∣ ∣ V ∣ ∣ P = ( ∑ i = 1 n ∣ V i ∣ p ) 1 p ||V||_P = (\sum_{i=1}^{n} |V_i|^p)^{\frac{1}{p}} VP=(i=1nVip)p1

Frobenius Norm

∣ ∣ V ∣ ∣ F = ( ∑ i = 1 n ∣ V i ∣ 2 ) 1 2 ||V||_F = (\sum_{i=1}^{n} |V_i|^2)^{\frac{1}{2}} VF=(i=1nVi2)21, where in vector it coincides with 2-norm

Infinity and Negative Infinity Norm

∣ ∣ V ∣ ∣ ∞ = max ⁡ ( ∣ V i ∣ ) , i = 1 , . . . , n ||V||_{\infin} = \max(|V_i|), i=1,...,n V=max(Vi),i=1,...,n

∣ ∣ V ∣ ∣ − ∞ = min ⁡ ( ∣ V i ∣ ) , i = 1 , . . . , n ||V||_{-\infin} = \min(|V_i|), i=1,...,n V=min(Vi),i=1,...,n

Norms in Matrix ( A ∈ R m , n A \in R^{m,n} ARm,n)

P-norm

∣ ∣ A ∣ ∣ P = ∣ ∣ vec(A) ∣ ∣ p = ( ∑ i = 1 m ∑ j = 1 n ∣ A i j ∣ p ) 1 p \begin{aligned} ||A||_P & =||\text{vec(A)}||_p \\ & = (\sum_{i=1}^{m} \sum_{j=1}^{n} |A_{ij}|^p)^{\frac{1}{p}}\\ \end{aligned} AP=vec(A)p=(i=1mj=1nAijp)p1

Frobenius Norm

∣ ∣ A ∣ ∣ F = ( ∑ i = 1 m ∑ j = 1 n ∣ A i , j ∣ 2 ) 1 2 = trace ( A T A ) = ∑ i = 1 min of m, n eigen values of  A T A = ∑ i = 1 min of m,n σ i 2 ( A ) \begin{aligned} ||A||_F & = (\sum_{i=1}^{m} \sum_{j=1}^{n} |A_{i,j}|^2)^{\frac{1}{2}} \\ & = \sqrt{\text{trace}(A^TA)} \\ & = \sqrt{\sum_{i=1}^{\text{min of m, n}} \text{eigen values of } A^TA} \\ &=\sqrt{\sum_{i=1}^{\text{min of m,n}}\sigma_i^2(A)}\\ \end{aligned} AF=(i=1mj=1nAi,j2)21=trace(ATA) =i=1min of m, neigen values of ATA =i=1min of m,nσi2(A)

Nuclear Norm

∣ ∣ A ∣ ∣ ∗ = t r a c e ( A T A ) = ∑ i = 1 min of m, n σ i ( A ) \begin{aligned} ||A||_* & = trace(\sqrt{A^TA}) \\ & = \sum_{i=1}^{\text{min of m, n}} \sigma_i(A) \end{aligned} A=trace(ATA )=i=1min of m, nσi(A)

1-norm

∣ ∣ A ∣ ∣ 1 = max ⁡ 1 ≤ j ≤ n ( ∑ i = 1 m ∣ A i j ∣ ) ||A||_1 = \max_{1 \le j \le n} (\sum_{i=1}^{m} |A_{ij}|) A1=1jnmax(i=1mAij)

2-norm

∣ ∣ A ∣ ∣ 2 = σ m a x ( A ) = max eigen value of  A T A ≤ ∣ ∣ A ∣ ∣ F = ( ∑ i = 1 m ∑ j = 1 n ∣ A i , j ∣ 2 ) 1 2 \begin{aligned} ||A||_2 &= \sigma_{max}(A) \\ & = \sqrt{\text{max eigen value of } A^TA} \\ & \le ||A||_F \\ & = (\sum_{i=1}^{m} \sum_{j=1}^{n} |A_{i,j}|^2)^{\frac{1}{2}} \end{aligned} A2=σmax(A)=max eigen value of ATA AF=(i=1mj=1nAi,j2)21, σ ( A ) max ⁡ \sigma(A)_{\max} σ(A)max repesents largest singular value of matrix A.

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值