有序回归: Ordinal Regression的理解

有序回归是一种处理类别间存在顺序关系的数据分析方法,它结合了分类和回归的特点。与传统的分类不同,有序回归不仅考虑误分类的损失,还考虑了类别间的顺序,使得更接近真实值的误判损失较小。例如,在年龄估计问题中,将2岁误分类为1岁的损失应该小于误分类为0岁的损失。这种模型在年龄预测、满意度调查等领域有广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天读文献,遇到有序回归(Ordinal Regression)算法。

通过简单的调研,这里说一下自己对有序回归的理解。

Ordinal Regression就是解决类别之间有某种顺序关系的模型,比如年龄,收入等。使模型除了考虑分类损失以外,还要考虑不同类别之间的顺序关系,使与真实标签排序更近的误判的损失小于远离真实标签的误判的损失。

有序回归问题可以看作是分类问题和回归问题的中间问题。(It can be considered an intermediate problem between regression and classification--wikipedia

 

逻辑回归

原始的逻辑回归只解决二分类问题,由二分类问题进而也可以扩展到多分类问题。参考李航的《统计学习方法》。

分类问题可用于对猫,狗,鸟,花等的分类。

 

有序回归

但是,当不同类别的类别之间有一定的顺序关系时,仅仅使用分类损失是不够的。

比如:我们对人的年龄进行分类:0岁,1岁和2岁。这时仅仅使用分类损失是不够的。

如果一个样本的真实年龄是0,如果用分类方法,我们把它的年龄分类成1岁和2岁时的损失是相等的。但是,明显1岁要比2岁,更加接近于0岁,1岁是一个比2岁更可被接受的分类。因此从应用意义上,1岁应该比2岁有更小的损失。

有序回归就是解决这个问题,除了考虑分类损失以外,还要考虑误分类的类别和真实类别之间的排序关系,排序更近的损失应该更小。

 

有序回归的一个典型应用就是年龄估计的问题:年龄估计:Ordinal Regression


参考: 年龄估计:Ordinal Regression

            有序回归(Ordinal regression)和逻辑回归有什么区别?--知乎
 

支持向量机学习用于有序回归,是一种机器学习方法,用于处理具有有序标签值的分类问题。有序回归问题在许多实际应用中都非常常见,例如对产品评价的情感分析、用户满意度预测等。 支持向量机(Support Vector Machine,SVM)是一种二分类模型,其目标是找到一个超平面,将不同类别的样本分开,并且使得分隔间隔最大。在支持向量机学习中,核心思想是将高维特征空间映射到一个更低维的特征空间,从而将复杂的非线性问题转化为线性可分的问题。 在有序回归任务中,支持向量机学习的目标是通过训练数据集找到一个有序的分类函数,将输入样本映射到有序标签值上。为了解决有序回归问题,可以使用一种称为“比较类别”的方法,即将问题转化为将输入样本与一组比较类别进行比较的问题。 支持向量机学习在有序回归中的应用具有一些优势。首先,支持向量机可以通过引入核函数来处理非线性关系,提高对于复杂数据的建模能力。其次,支持向量机具有良好的推广能力,可以在训练数据集之外进行准确的预测。此外,支持向量机可以通过调整超参数来灵活地适应不同的任务和数据集。 总之,支持向量机学习是一种有效的方法,可以用于解决有序回归问题。它可以通过映射特征空间和引入核函数来处理非线性关系,并且具有良好的推广能力和灵活的参数调整能力。在实际应用中,我们可以基于支持向量机学习方法来开发有效的有序回归模型,提取有序标签值与输入样本之间的关系,实现准确的预测和分类。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值