现在我们常用的深度学习神经网络,仅仅是人工神经网络的一个分枝,还有许多其他类型的神经网络。
现在的神经网络主要是基于梯度反向传播(BP)算法更新模型参数,同样BP是一种参数更新方式,但也不是唯一一种。
这个学期选了《人工神经网络》课程,就是希望能更全面的了解神经网络的领域知识。
Hebbian学习规则
与BP算法一样,Hebbian学习规则也是一种参数更新的方式。该学习规则:将一个神经元的输入与输出信息进行对比,对该神经元的输入权重参数进行更新。该学习规则使每个神经元独自作战。一个神经元的参数更新,仅仅与它自己的输入与输出数据有关,不考虑整个网络的全局情况。
Hebbian学习规则通常使用双极性激活函数,即激活函数的取值范围是[-1,1],使得输入与输出同号(+或-)时,加大权重,否则,降低权重。
因此,通常,Hebbian学习规则用当前神经元的输入与输出的乘积更新自己的权重。
其中:是第
个神经元的输出,
是神经元的第
个输入。
是神经元
与第
个输入数据
之间的权重。
一个例题,源自《人工神经网络理论及应用(韩力群)》,第35页,自己又写了一遍,如下:
参考:《人工神经网络理论及应用(韩力群)》,第34,35页