Hebb rule and its modification
Hebb学习算法可以说是最古老的一个学习规则了,neurons fires together, wire together
突触权重改变与神经元协同活动的关系
根据”一起放火一起死“的假设,突触权重的改变正比于突触前和突触神经元的活动
Δ
ω
i
=
η
x
i
y
\Delta \omega_i = \eta x_i y
Δωi=ηxiy
Hebb法则只考虑了兴奋性突触的调整情况,对侧向连接和抑制性神经元活动则不能很好的描述,aiti-Hebb形式与Hebb形同,区别在于一个负号
Δ
ω
i
=
−
η
x
i
y
\Delta \omega_i = -\eta x_i y
Δωi=−ηxiy
Hebb只考虑了LTP,权重只知道增不知道减,当权重到达最大值后便不会更新了,对其改进主要有两种方法:一种是自适应阈值方法,另一种是归一化方法。
adaptive threshold的方法比较直接的想法是通过设置突触前后神经元活动的阈值,限制其活动。
d
w
⃗
d
t
=
η
(
x
⃗
−
θ
⃗
x
)
(
y
−
θ
y
)
\frac{d \vec{w}}{d t}=\eta\left(\vec{x}-\vec{\theta}_{x}\right)\left(y-\theta_{y}\right)
dtdw=η(x−θx)(y−θy)
当突触前为多输入时,突触前的阈值可以是一个均值,当突触前后某一方神经元低于阈值时,会发生权重衰减。
上述方法虽然简单直接,但并不是很奏效。自适应阈值的一种代表性的方法是BCM方法,它使用滑动阈值的方法来稳定突触可塑性,并且在生物视觉皮层和海马中均已经找到BCM行为的证据。
BCM不再给突触前活动设定阈值,其更新法则如下:
Δ
w
i
=
y
(
y
−
θ
M
)
x
i
−
ϵ
w
i
θ
M
=
E
P
[
(
y
/
y
0
)
]
\Delta w_{i}=y\left(y-\theta_{M}\right) x_{i}-\epsilon w_{i}\\ \theta_{M}=E^{P}\left[\left(y / y_{0}\right)\right]
Δwi=y(y−θM)xi−ϵwiθM=EP[(y/y0)]
等式最右边是一个与当前权重相关的衰减项,可以认为是当突触前后神经元无活动时,发生的权重衰减。
θ
M
\theta_M
θM为滑动阈值,
y
0
y_0
y0为突触后神经元活动的期望值,E是一个用于滑动的函数来更新阈值,一种可能的形式为
d
θ
d
t
=
η
θ
(
y
2
−
θ
y
)
\frac{d \theta}{d t}=\eta_{\theta}\left(y^{2}-\theta_{y}\right)
dtdθ=ηθ(y2−θy)
使用synaptic scaling可以有效地控制其变化,常用的方法为权重除以权重之和,基于权重之和的正则化也被称为“subtractive normalization”
ω
′
=
ω
β
N
i
n
∑
ω
\omega^{'} = \omega \frac{\beta N_{in}}{\sum\omega}
ω′=ω∑ωβNin
正则化形式并不固定, 诸如以下形式均可
ω
i
k
=
ω
i
k
′
N
ω
a
v
g
ω
k
′
\omega_{ik} = \omega_{ik}^{'} N \frac{\omega_{avg}}{\omega_k^{'}}
ωik=ωik′Nωk′ωavg
等式右边依次是未归一化的权重、突触前神经元个数(或与突触后神经元连接的总突触数)、网络中所有突触的平均权重、所有与突触后神经元相连的突触的权重之和。
除了基于权重之和的归一化方法,还有一种方法就是基于权重平方之和的方法,称为"multiplicative normalization",比较著名的便是oja’s rule。
该方法将权重对其和的平方进行除法运算,(原始论文p=2)
ω
i
=
ω
i
+
η
y
x
i
(
∑
j
=
1
m
[
ω
j
+
η
y
x
j
]
p
)
1
/
p
\omega_i = \frac{\omega_i+\eta yx_i}{(\sum_{j=1}^{m}[\omega_j + \eta yx_j]^{p})^{1/p}}
ωi=(∑j=1m[ωj+ηyxj]p)1/pωi+ηyxi
通过推导并指定权重标准化为1,
∣
ω
∣
=
(
∑
j
=
1
m
ω
j
p
)
1
/
p
=
1
|\omega|=(\sum\limits _{j=1}^{m}\omega_j^p)^{1/p}=1
∣ω∣=(j=1∑mωjp)1/p=1,可以得到oja规则如下:
Δ
w
i
=
η
(
x
i
y
−
y
2
w
i
)
\Delta w_{i}=\eta\left(x_{i} y-y^{2} w_{i}\right)
Δwi=η(xiy−y2wi)
上述公式比经典hebb多了一个衰减项,权重和其突触后活动越高,衰减得也就越多。原文证明,当使用该规则后,突触后神经元提取了突触前神经元活动向量的主成分。
参考文献
[1] Computational Modeling of Neural Plasticity for Self-Organization of Neural Networks
Joseph