离线win7上用anaconda离线创建虚拟环境

本文所需文件的下载路径为:

百度云链接:https://pan.baidu.com/s/14S-xkERRhQVNfV-dauVYzw 
提取码:5hzn


第一步:安装anaconda。

        win7系统不支持python3.9,因此不能在win7系统上安装过新的anaconda,否则会出现无法创建menu的错误。根据经验,win7支持 Anaconda3-2021.05-Windows-x86_64.exe 的安装。

        建议把anaconda安装到D盘或E盘,因为创建虚拟环境需要占用较大内存,一个虚拟环境约需要占1G多的内存。

第二步:解压env.rar文件,拷贝到anaconda的安装路径下,替换原来的env文件夹。

        在离线条件下,conda不能从零创建一个虚拟环境,需要从其他地方拷贝。我在联网的机器上创建了4个纯净的虚拟环境:base-env-py36;base-env-py37;base-env-py38;base-env-py39。 对应的python版本分别是python3.6,python3.7,python3.8,python3.9。

        在安装完anaconda后,可将env.rar解压,替换anaconda安装路径下的env文件夹。此时,conda可以自动检测到这四个虚拟环境。之后,可基于这四个基础的虚拟环境创建新的虚拟环境。

第三步:使用clone创建新的虚拟环境。

        在cmd命令行终端或anaconda prompt中输入以下指令创建新的虚拟环境。

conda create -n your_env_name --offline --clone path_to_existed_base_env

        示例:

conda create -n work-env-py37 --offline --clone E:\software-setups\Anaconda3\envs\base-env-py37

        一般,为每一个项目单独创建一个虚拟环境,因此不建议直接使用本文提供的纯净虚拟环境。

第四步:给创建的虚拟环境安装需要的功能package,如numpy,tensorflow等。

        建议先在联网的机器上下载好相关的依赖包,然后拷贝到离线机器上安装,具体可参考我的博客python环境迁移:从联网笔记本到离线服务器_wzg2016的博客-CSDN博客

### 安装PyTorch GPU版本于CUDA 9.0环境 对于希望在CUDA 9.0环境下安装兼容的PyTorch GPU版本的情况,可以采取离线安装的方式。首先确认计算机配备有支持CUDA的NVIDIA显卡并已成功安装CUDA 9.0以及相应的cuDNN库[^1]。 针对特定的操作系统和Python版本组合,在此案例中为Windows 10操作系统、Python 3.7版本的情况下,应寻找与之匹配的PyTorch和torchvision包。具体来说,适用于该配置的是`pytorch-1.1.0-py3.7_cuda90_cudnn7_1.tar.bz2` 和 `torchvision-0.3.0-py37_cu90_1.tar.bz2` 文件[^4]。 为了完成这些软件包的安装,需提前下载上述两个`.tar.bz2`文件至本地磁盘上的某个目录内。接着打开命令提示符窗口,并切换到存储这两个压缩包的路径下执行如下两条指令: ```bash conda install --offline pytorch-1.1.0-py3.7_cuda90_cudnn7_1.tar.bz2 conda install --offline torchvision-0.3.0-py37_cu90_1.tar.bz2 ``` 通过这种方式能够有效规避因网络连接不稳定而导致在线安装失败的问题。 另外一种方法是在具备良好互联网访问条件的前提下尝试直接利用pip工具进行在线安装。创建一个新的Conda虚拟环境之后,可以通过指定URL来获取带有CUDA支持的PyTorch轮子文件(wheel file),例如使用以下命令: ```bash pip install --target=d:\Anaconda3_installed\envs\pt-gpu http://download.pytorch.org/whl/cu90/torch-0.4.1-cp36-cp36m-win_amd64.whl ``` 需要注意的是,这里给出的例子基于Python 3.6版本;如果使用的Python版本不同,则需要调整链接中的版本号部分以确保正确无误地定位所需的二进制分发版[^5]。 最后一步则是单独安装torchvision库,这通常可以直接通过pip完成而无需额外参数设置: ```bash pip install torchvision ``` 以上就是关于如何在CUDA 9.0环境中安装适合的PyTorch GPU版本的方法介绍。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值