骑电动车不戴头盔识别抓拍系统通过计算机深度学习技术,骑电动车不戴头盔识别抓拍系统对于骑乘电动车摩托车电动三轮车戴帽子没带头盔的也包括骑乘人员和带乘人员,骑电动车不戴头盔识别抓拍系统可自动识别抓拍和报警同步回传给后台监控大数据平台。骑电动车不戴头盔识别抓拍系统对于正常出行走路的行人或者骑共享自行车没有戴头盔不进行抓拍自动过滤掉。
在CNN出现之前,对于图像的处理一直都是一个很大的问题,一方面因为图像处理的数据量太大,比如一张512 x 512的灰度图,它的输入参数就已经达到了252144个,更别说1024x1024x3之类的彩色图,这也导致了它的处理成本十分昂贵且效率极低。另一方面,图像在数字化的过程中很难保证原有的特征,这也导致了图像处理的准确率不高。
而CNN网络能够很好的解决以上两个问题。对于第一个问题,CNN网络它能够很好的将复杂的问题简单化,将大量的参数降维成少量的参数再做处理。也就是说,在大部分的场景下,我们使用降维不会影响结果。比如在日常生活中,我们用一张1024x1024x3表示鸟的彩色图和一张100x100x3表示鸟的彩色图,我们基本上都能够用肉眼辨别出这是一只鸟而不是一只狗。这也是卷积神经网络在图像分类里的一个重要应用。
随着社会的发展和城市交通发展的越来越快,机动车辆和非机动车辆发生事故的情况越来越多。基于此种情况,很多省市都出台了相关交通管理条例进行约束管理违规不安全行为。条例中表明:骑电动车没有按规定佩戴头盔的,抓拍存档后由公安机关交通管理部门处将警告或二十元以上五十元以下罚款。在发生交通事故时,一般都是头部首先着地或者受到撞击,骑车由于受到惯性影响,头部往往不堪一击,受到很严重的伤害。头盔可以有效的保护头部,起到一定的缓冲作用,分散并吸收来自外部的冲击力,降低对人体的损害。
import numpy as np
def convert(size, box):
"""
将标注的 xml 文件生成的【左上角x,左上角y,右下角x,右下角y】标注转换为yolov5训练的坐标
:param size: 图片的尺寸: [w,h]
:param box: anchor box 的坐标 [左上角x,左上角y,右下角x,右下角y,]
:return: 转换后的 [x,y,w,h]
"""
x1 = int(box[0])
y1 = int(box[1])
x2 = int(box[2])
y2 = int(box[3])
dw = np.float32(1. / int(size[0]))
dh = np.float32(1. / int(size[1]))
w = x2 - x1
h = y2 - y1
x = x1 + (w / 2)
y = y1 + (h / 2)
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return [x, y, w, h]
骑电动车不戴头盔识别抓拍系统对城市交通道路上骑行人员没有戴头盔情况实时检测,当骑电动车不戴头盔识别抓拍系统监测到监控画面中骑车人员没有遵守交通股则佩戴头盔时,立即抓拍告警同步回传给后台监控平台提醒相关人员及时处理。骑电动车不戴头盔识别抓拍系统提升了传统交通监控的使用效率,通过AI技术大幅度提升交通管理手段降低漏报误报情况。