垃圾焚烧识别监测系统基于AI人工智能机器视觉分析识别技术,垃圾焚烧识别监测系统利用现场已有的监控摄像头对监控区域的垃圾焚烧行为进行实时监测。系统通过分析监控视频,运用深度学习算法对图像中的特征进行提取和识别,从而判断是否存在垃圾焚烧行为。当监测到有人违规焚烧垃圾时,系统将立即触发报警,提醒相关人员及时处理。垃圾焚烧识别监测系统能够对监测数据进行实时分析,提供有用的数据支持,帮助管理人员更好地了解垃圾焚烧情况。
Python是一门解释性脚本语言。解释性语言:解释型语言,是在运行的时候将程序翻译成机器语言;解释型语言的程序不需要在运行前编译,在运行程序的时候才翻译,专门的解释器负责在每个语句执行的时候解释程序代码,所以解释型语言每执行一次就要翻译一次,与之对应的还有编译性语言。编译性语言:编译型语言写的程序执行之前,需要一个专门的编译过程,把程序编译成为机器语言的文件,比如exe文件,以后要运行的话就不用重新翻译了,直接使用编译的结果就行了(exe文件),因为翻译只做了一次,运行时不需要翻译,所以编译型语言的程序执行效率一般来说较高。脚本语言:脚本语言又被称为扩建的语言,或者动态语言,是一种编程语言,用来控制软件应用程序,脚本通常以文本(如ASCII)保存,只在被调用时进行解释或编译。所以一般使用Python来实现特定功能而不是较为复杂的后端。
随着城市化进程的加速,垃圾问题日益严重。传统的垃圾处理方式已无法满足现代社会的需求,而垃圾焚烧作为一种高效、环保的垃圾处理方式,得到了广泛应用。但同时也存在着违规焚烧垃圾的问题,给环境带来了严重的影响。因此,对垃圾焚烧行为的实时监测和管理成为了亟待解决的问题。在当今社会,垃圾处理已成为环境保护的重要一环。其中,垃圾焚烧是一种高效的处理方式,但同时也面临着环保法规严格监管的挑战。为了有效管理垃圾焚烧行为,减少环境污染,AI人工智能机器视觉分析识别技术应运而生。本文将介绍一种基于该技术的垃圾焚烧识别监测系统,旨在实时监测垃圾焚烧行为,一旦发现违规行为,立即触发报警,提高环境执法效能。
# parameters
nc: 3 # number of classes <============ 修改这里为数据集的分类数
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Focus, [64, 3]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, BottleneckCSP, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 9, BottleneckCSP, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, BottleneckCSP, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 1, SPP, [1024, [5, 9, 13]]],
[-1, 3, BottleneckCSP, [1024, False]], # 9
]
# YOLOv5 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, BottleneckCSP, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, BottleneckCSP, [256, False]], # 17
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, BottleneckCSP, [512, False]], # 20
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, BottleneckCSP, [1024, False]], # 23
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
基于AI人工智能机器视觉分析识别技术的垃圾焚烧识别监测系统具有显著的优势,能够提高环境执法效能、降低监管成本、及时响应违规行为、震慑违法排污行为,并为其他行业的环境管理提供实践基础。垃圾焚烧识别监测系统可24小时不间断监测,有效提高环境执法效能。减少人力监管成本,实现智能化管理。垃圾焚烧识别监测系统为其他行业环境管理提供实践基础:自动监测数据可用于其他重点行业的环境管理。