无人机非机动车检测AI算法能够从复杂的城市交通场景中准确识别出非机动车辆和行人。无人机非机动车检测AI算法通过深度学习模型的训练,算法能够识别出非机动车辆的种类,如自行车、电动车等,并且能够分析其行为模式,包括是否逆行、是否闯红灯等违反交通规则的行为。传统的交通监控系统往往依赖于有限的监控摄像头,而无人机的灵活性和高空视角为交通监控提供了新的可能。结合AI算法,无人机能够实时捕获并处理大量图像和视频数据,大大提高了数据处理的速度和准确性。无人机非机动车检测AI算法应用在交通管理中,可实现对常见的动静态违法事件进行判断,例如非法占用应急车道、实线变道、交通拥堵、高速停车、倒车以及行人上高速等。
YOLOX在YOLO系列的基础上做了一系列的工作,其主要贡献在于:在YOLOv3的基础上,引入了Decoupled Head,Data Aug,Anchor Free和SimOTA样本匹配的方法,构建了一种anchor-free的端到端目标检测框架,并且达到了一流的检测水平。
此外,本文提出的 YOLOX-L 模型在视频感知挑战赛(CVPR 2021年自动驾驶研讨会)上获得了第一名。作者还提供了支持ONNX、TensorRT、NCNN和Openvino的部署版本。
为什么提出YOLOX:
目标检测分为Anchor Based和Anchor Free两种方式。
在Yolov3、Yolov4、Yolov5中,通常都是采用 Anchor Based的方式,来提取目标框。
Yolox 将 Anchor free 的方式引入到Yolo系列中,使用anchor free方法有如下好处:
降低了计算量,不涉及IoU计算,另外产生的预测框数量较少。
假设feature map的尺度为80x80,anchor based方法在Feature Map上,每个单元格一般设置三个不同尺寸大小的锚框,因此产生3x80x80=19200个预测框。而使用anchor free的方法,仅产生80x80=6400个预测框,降低了计算量。
缓解了正负样本不平衡问题
anchor free方法的预测框只有anchor based方法的1/3,而预测框中大部分是负样本,因此anchor free方法可以减少负样本数,进一步缓解了正负样本不平衡问题。
避免了anchor的调参
anchor based方法的anchor box的尺度是一个超参数,不同的超参数设置会影响模型性能。anchor free方法避免了这一点。
随着城市化进程的加快,交通管理面临着前所未有的挑战。非机动车辆和行人作为城市交通的重要组成部分,其行为模式的识别和管理对于维护交通秩序、保障行人安全至关重要。在这一背景下,无人机非机动车检测AI算法应运而生,它基于YOLOv7与CNN深度学习算法,通过分析无人机捕获的图像和视频数据,实现了对非机动车辆和行人的高效识别。交通安全是城市交通管理的重中之重。无人机非机动车检测AI算法能够及时发现非机动车辆的违规行为,为交通管理部门提供实时的违规信息,从而采取相应的措施,减少交通事故的发生,保障行人和非机动车辆的安全。
class Detect(nn.Module):
stride = None # strides computed during build
onnx_dynamic = False # ONNX export parameter
def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
super().__init__()
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors
self.grid = [torch.zeros(1)] * self.nl # init grid
self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid
self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
self.inplace = inplace # use in-place ops (e.g. slice assignment)
def forward(self, x):
z = [] # inference output
for i in range(self.nl):
x[i] = self.m[i](x[i]) # conv
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if not self.training: # inference
if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
y = x[i].sigmoid()
if self.inplace:
y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
y = torch.cat((xy, wh, y[..., 4:]), -1)
z.append(y.view(bs, -1, self.no))
return x if self.training else (torch.cat(z, 1), x)
def _make_grid(self, nx=20, ny=20, i=0):
d = self.anchors[i].device
if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
else:
yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
return grid, anchor_grid
无人机非机动车检测AI算法通过无人机捕获的数据,无人机非机动车检测AI算法能够识别非机动车辆的流量和行为模式,这对于城市交通规划者来说是一个宝贵的资源。通过对这些数据的分析,可以发现交通拥堵的热点区域,优化交通信号灯的设置,甚至重新规划道路布局,以提高交通效率和安全性。无人机非机动车检测AI算法的应用,使得城市交通管理更加智能化和自动化。无人机的高空监控能力,结合AI算法的识别能力,可以有效地识别和监控非机动车辆,减少交通违规行为,提高城市交通管理的效率。