label encoding和one hot encoding简单对比

本文主要探讨了在机器学习预处理阶段,label encoding与one hot encoding两种编码方式的使用场景和区别。label encoding是对类别特征进行数值化,而one hot encoding则将类别特征转换为二进制形式,适用于多分类问题。理解这两种编码方法对于模型训练和性能优化至关重要。
摘要由CSDN通过智能技术生成
对类别变量进行处理的方法概念缺点备注
label encoding随机赋予类别变量数值赋值难以解释,不适用与类别变量有高低之分的场景(如本科生、硕士研究生、博士生)以及对数值大小敏感的模型(如逻辑回归、SVM等)当变量是无序变量的时候,label encoding比one-hot encoding 好
one-hot encoding将类别变量展开成特征列名,用0/1表示样本是否具备该特征当类别特别多时,特征空间会变得很大
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值