network_api_pytorch_mnist

本文介绍了如何使用PyTorch训练的MNIST模型,将其转换为TensorRT推理引擎,以实现高效的CPU/GPU加速推理过程,包括网络结构配置、权重加载、内存管理及实际的推理案例演示。
摘要由CSDN通过智能技术生成

haha1

#
# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import os
import sys

# This sample uses an MNIST PyTorch model to create a TensorRT Inference Engine
import model
import numpy as np

import tensorrt as trt

sys.path.insert(1, os.path.join(sys.path[0], ".."))
import common

# You can set the logger severity higher to suppress messages (or lower to display more messages).
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)


class ModelData(object):
    INPUT_NAME = "data"
    INPUT_SHAPE = (1, 1, 28, 28)
    OUTPUT_NAME = "prob"
    OUTPUT_SIZE = 10
    DTYPE = trt.float32


def populate_network(network, weights):
    # Configure the network layers based on the weights provided.
    input_tensor = network.add_input(name=ModelData.INPUT_NAME, dtype=ModelData.DTYPE, shape=ModelData.INPUT_SHAPE)

    def add_matmul_as_fc(net, input, outputs, w, b):
        assert len(input.shape) >= 3
        m = 1 if len(input.shape) == 3 else input.shape[0]
        k = int(np.prod(input.shape) / m)
        assert np.prod(input.shape) == m * k
        n = int(w.size / k)
        assert w.size == n * k
        assert b.size == n

        input_reshape = net.add_shuffle(input)
        input_reshape.reshape_dims = trt.Dims2(m, k)

        filter_const = net.add_constant(trt.Dims2(n, k), w)
        mm = net.add_matrix_multiply(
            input_reshape.get_output(0),
            trt.MatrixOperation.NONE,
            filter_const.get_output(0),
            trt.MatrixOperation.TRANSPOSE,
        )

        bias_const = net.add_constant(trt.Dims2(1, n), b)
        bias_add = net.add_elementwise(mm.get_output(0), bias_const.get_output(0), trt.ElementWiseOperation.SUM)

        output_reshape = net.add_shuffle(bias_add.get_output(0))
        output_reshape.reshape_dims = trt.Dims4(m, n, 1, 1)
        return output_reshape

    conv1_w = weights["conv1.weight"].cpu().numpy()
    conv1_b = weights["conv1.bias"].cpu().numpy()
    conv1 = network.add_convolution_nd(
        input=input_tensor, num_output_maps=20, kernel_shape=(5, 5), kernel=conv1_w, bias=conv1_b
    )
    conv1.stride_nd = (1, 1)

    pool1 = network.add_pooling_nd(input=conv1.get_output(0), type=trt.PoolingType.MAX, window_size=(2, 2))
    pool1.stride_nd = trt.Dims2(2, 2)

    conv2_w = weights["conv2.weight"].cpu().numpy()
    conv2_b = weights["conv2.bias"].cpu().numpy()
    conv2 = network.add_convolution_nd(pool1.get_output(0), 50, (5, 5), conv2_w, conv2_b)
    conv2.stride_nd = (1, 1)

    pool2 = network.add_pooling_nd(conv2.get_output(0), trt.PoolingType.MAX, (2, 2))
    pool2.stride_nd = trt.Dims2(2, 2)

    fc1_w = weights["fc1.weight"].cpu().numpy()
    fc1_b = weights["fc1.bias"].cpu().numpy()
    fc1 = add_matmul_as_fc(network, pool2.get_output(0), 500, fc1_w, fc1_b)

    relu1 = network.add_activation(input=fc1.get_output(0), type=trt.ActivationType.RELU)

    fc2_w = weights["fc2.weight"].cpu().numpy()
    fc2_b = weights["fc2.bias"].cpu().numpy()
    fc2 = add_matmul_as_fc(network, relu1.get_output(0), ModelData.OUTPUT_SIZE, fc2_w, fc2_b)

    fc2.get_output(0).name = ModelData.OUTPUT_NAME
    network.mark_output(tensor=fc2.get_output(0))


def build_engine(weights):
    # For more information on TRT basics, refer to the introductory samples.
    builder = trt.Builder(TRT_LOGGER)
    network = builder.create_network(0)
    config = builder.create_builder_config()
    runtime = trt.Runtime(TRT_LOGGER)

    config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, common.GiB(1))
    # Populate the network using weights from the PyTorch model.
    populate_network(network, weights)
    # Build and return an engine.
    plan = builder.build_serialized_network(network, config)
    return runtime.deserialize_cuda_engine(plan)


# Loads a random test case from pytorch's DataLoader
def load_random_test_case(model, pagelocked_buffer):
    # Select an image at random to be the test case.
    img, expected_output = model.get_random_testcase()
    # Copy to the pagelocked input buffer
    np.copyto(pagelocked_buffer, img)
    return expected_output


def main():
    common.add_help(description="Runs an MNIST network using a PyTorch model")
    # Train the PyTorch model
    mnist_model = model.MnistModel()
    mnist_model.learn()
    weights = mnist_model.get_weights()
    # Do inference with TensorRT.
    engine = build_engine(weights)

    # Build an engine, allocate buffers and create a stream.
    # For more information on buffer allocation, refer to the introductory samples.
    inputs, outputs, bindings, stream = common.allocate_buffers(engine)
    context = engine.create_execution_context()

    case_num = load_random_test_case(mnist_model, pagelocked_buffer=inputs[0].host)
    # For more information on performing inference, refer to the introductory samples.
    # The common.do_inference function will return a list of outputs - we only have one in this case.
    [output] = common.do_inference(context, engine=engine, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream)
    pred = np.argmax(output)
    common.free_buffers(inputs, outputs, stream)
    print("Test Case: " + str(case_num))
    print("Prediction: " + str(pred))


if __name__ == "__main__":
    main()
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

# This file contains functions for training a PyTorch MNIST Model
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable

import numpy as np

from random import randint


# Network
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, kernel_size=5)
        self.conv2 = nn.Conv2d(20, 50, kernel_size=5)
        self.fc1 = nn.Linear(800, 500)
        self.fc2 = nn.Linear(500, 10)

    def forward(self, x):
        x = F.max_pool2d(self.conv1(x), kernel_size=2, stride=2)
        x = F.max_pool2d(self.conv2(x), kernel_size=2, stride=2)
        x = x.view(-1, 800)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)


class MnistModel(object):
    def __init__(self):
        self.batch_size = 64
        self.test_batch_size = 100
        self.learning_rate = 0.0025
        self.sgd_momentum = 0.9
        self.log_interval = 100
        # Fetch MNIST data set.
        self.train_loader = torch.utils.data.DataLoader(
            datasets.MNIST(
                "/tmp/mnist/data",
                train=True,
                download=True,
                transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]),
            ),
            batch_size=self.batch_size,
            shuffle=True,
            num_workers=1,
            timeout=600,
        )
        self.test_loader = torch.utils.data.DataLoader(
            datasets.MNIST(
                "/tmp/mnist/data",
                train=False,
                transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]),
            ),
            batch_size=self.test_batch_size,
            shuffle=True,
            num_workers=1,
            timeout=600,
        )
        self.network = Net()
        if torch.cuda.is_available():
            self.network = self.network.to("cuda")

    # Train the network for one or more epochs, validating after each epoch.
    def learn(self, num_epochs=2):
        # Train the network for a single epoch
        def train(epoch):
            self.network.train()
            optimizer = optim.SGD(self.network.parameters(), lr=self.learning_rate, momentum=self.sgd_momentum)
            for batch, (data, target) in enumerate(self.train_loader):
                if torch.cuda.is_available():
                    data = data.to("cuda")
                    target = target.to("cuda")
                data, target = Variable(data), Variable(target)
                optimizer.zero_grad()
                output = self.network(data)
                loss = F.nll_loss(output, target)
                loss.backward()
                optimizer.step()
                if batch % self.log_interval == 0:
                    print(
                        "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
                            epoch,
                            batch * len(data),
                            len(self.train_loader.dataset),
                            100.0 * batch / len(self.train_loader),
                            loss.data.item(),
                        )
                    )

        # Test the network
        def test(epoch):
            self.network.eval()
            test_loss = 0
            correct = 0
            for data, target in self.test_loader:
                with torch.no_grad():
                    if torch.cuda.is_available():
                        data = data.to("cuda")
                        target = target.to("cuda")
                    data, target = Variable(data), Variable(target)
                output = self.network(data)
                test_loss += F.nll_loss(output, target).data.item()
                pred = output.data.max(1)[1]
                correct += pred.eq(target.data).cpu().sum()
            test_loss /= len(self.test_loader)
            print(
                "\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format(
                    test_loss, correct, len(self.test_loader.dataset), 100.0 * correct / len(self.test_loader.dataset)
                )
            )

        for e in range(num_epochs):
            train(e + 1)
            test(e + 1)

    def get_weights(self):
        return self.network.state_dict()

    def get_random_testcase(self):
        data, target = next(iter(self.test_loader))
        case_num = randint(0, len(data) - 1)
        test_case = data.cpu().numpy()[case_num].ravel().astype(np.float32)
        test_name = target.cpu().numpy()[case_num]
        return test_case, test_name
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值