自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 资源 (1)
  • 收藏
  • 关注

原创 SINBAD论文笔记 | Set Features for Fine-grained Anomaly Detection

请注意,由于不同的块具有不同的分辨率,它们产生不同数量的元素。我们以每个残差块末端的元素作为我们的集合。4.2 时间序列作为集合时间序列数据可以被视为时间窗口的集合。与图像类似,通常事先不知道哪个时间尺度与检测异常相关;即包含语义现象的窗口持续时间。受到Rocket Dempster等人(2020)的启发,我们将时间序列的基本元素定义为时间窗口金字塔的集合。每个金字塔包含L个窗口。金字塔中的所有窗口都以相同的时间步为中心,每个窗口包含τ个样本(见图3)。第一级窗口包括τ个元素,步长为1;

2024-08-22 13:56:33 953

原创 论文与代码分析|| EfficientAD: Accurate Visual Anomaly Detection at Millisecond-Level Latencies

在标准的S-T框架中,教师在ImageNet上进行预训练,学生没有接受关于该预训练数据集的培训,而只接受了关于的正常图像训练。因此,引入了训练损失,与Online Hard Example Mining类似,其将学生的loss限制在图像中最相关的部分,提出了hard feature loss,它只使用损失最大的输出元素进行反向传播。此外,这种轻量级的师生方法对缺乏以前方法所使用的技术来提高异常检测性能,如合多个教师和学生,使用来自层的金字塔的特征,以及使用学生和教师网络之间的架构不对称。

2024-07-16 16:19:33 1910

原创 基于OpenCv的分水岭算法分割棉签C++实践

核心流程:找出每个分割物体的前景:cv::distanceTransform对图片上每个像素分类:cv::connectedComponents分水岭算法:cv::watershed。

2024-07-03 21:01:06 29

原创 评价指标:AUPOC与AP区别

曲线类型AUC-ROC:基于ROC曲线(TPR vs FPR)。AP:基于Precision-Recall曲线(Precision vs Recall)。适用场景AUC-ROC:适用于类别分布均衡的数据集。AP:适用于类别不平衡的数据集,因为在不平衡数据集中,Precision-Recall曲线能够更好地反映模型性能。含义和解读AUC-ROC:表示模型区分正负样本的能力,值越高模型性能越好。AP:表示模型在不同阈值下的平均精度,值越高模型性能越好。计算方法。

2024-06-24 14:16:33 552

原创 SegAD源码分析 | Supervised Anomaly Detection for Complex Industrial Images

是单独训练的,使用完整训练集的 80%(对于 VAD,包括 1600 个良好部分和 800 个坏部分),以确保该模型的训练集和 SegAD 的训练集不完全重叠。下一个阶段是在 SegAD 中训练最终的BRF分类器,这需要使用良好和坏的图像,在某些情况下,坏图像可以用人工缺陷替代,如表 2 所示。需要注意的重要一点是,只要已经有其他模型可用,训练 SegAD 是非常快速的。,第二个子集用于训练 BRF 分类器。正如在第 5 节中将详细阐述的那样,分割图可以是静态的,也可以由分割模型生成,具体取决于数据集。

2024-06-17 17:22:36 614

原创 Uninformed Students: Student-Teacher Anomaly Detection 笔记 | 待补充

我们提出了一种新的框架,用于解决自然图像中无监督异常分割的挑战性问题。从中,可以通过两种方式获得异常度量: 首先,我们建议计算混合物的平均值 μ(r,c) 相对于教师的代理标签的回归误差: 我们提出了一个新框架,用于解决自然图像中无监督异常分割的挑战性问题。采用多个随机初始化的学生网络和一个教师网络,这样的在无异常图像学生网络的embedding就会相似,异常图像由于students是随机初始化的,且teacher并没有在异常样本上教过他们,所以在students之间embedding差异也会比较大。

2024-06-17 11:10:28 1462

原创 PaDiM代码详解 | PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and Localization

M(Xij)可以解释为嵌入xij的测试块与学习分布N(µij,Σij)之间的距离,马氏距离实际上是欧氏距离在多变量下的“加强版”,用于测量点(向量)与分布之间的距离。生成的补丁嵌入向量(100,768,56,56)可能携带冗余信息,文章认为随机选择几个维度比经典的主成分分析(PCA)算法更有效,代码中d=550。为了学习位置 (i, j) 处的正常图像特征,我们首先从 N 张正常训练图像中计算出位置 (i, j) 处的embeding为。数据采用mvtec格式的数据,共有100张训练图片。

2024-06-17 11:05:33 1642

原创 PatchCore代码详解 | Towards Total Recall in Industrial Anomaly Detection

在代码实现中,没有使用到公式7。然后通过自适应平均池化进行特征聚合,即fagg:训练模型输出feature map上的每个位置(h, w),都得到一个预先设定维度 d= 1024的单一表示,这样这样layer2、layer3的聚合特征[(1568, 512, 3, 3), (1568, 1024, 3, 3)]经过预处理,即分别经过自适应均值池化然后stack一起得到 (1568,2,1024)的输出特征。最后得到第i个test的热力图(196,224,224)->(i,224,224),

2024-06-17 11:01:27 750

原创 ai_pytorch 自用笔记

preliminaries数据操作resize 为深拷贝,不改变地址,更改变量,原张量的值也会变。clone浅拷贝,分配新内存axis=0[2,2,3] 变为[2,3],keepdim是[1,2,3]A*B 按元素点乘微积分原理导数→向量:梯度 矩阵求导,分子布局:“直观上讲,分子布局,就是分子是列向量形式,分母是行向量形式。分母布局则相反”。“分子布局的本质:分子是标量、列向量、矩阵向量化后的列向量;分母是标量、列向量转置后的行向量、矩阵的转置矩阵、矩阵向量化后的列向量转置后的行

2024-06-16 13:19:30 337

基于群论的TM算法,解魔方

描述魔方的TM算法,从数学的角度出发,魔方的颜色状态组合虽然千变万化,其实都是由一系列基本的转动操作产生的

2018-05-31

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除