伊壁鸠鲁的二难推理

伊壁鸠鲁的二难推理

I

  宇宙是否由确定性定律所支配?时间的本质是什么?这些问题在西方理性的萌发时期即已被前苏格拉底学者阐述过了。2500年之后,它们依然与我们同在。然而,与混沌和不稳定性相联系的物理学和数学最新进展,却开辟了不同的研究道路。我们正开始用一种新的观点审视这些涉及到人类在自然界中的地位的难题。我们现在可以避开过去的那些矛盾了。

  希腊哲学家伊壁鸠鲁(Epicurus)第一个表述了一个根本性的二难推理。作为德谟克利特(Democritus)的追随者,他认为世界由原子和虚空组成。而且,他断言原子以相同的速度平行地通过虚空下落。那么,它们怎么发生碰撞?与原子的组合密切相关的新奇性又如何出现呢?对伊壁鸠鲁来说,科学的问题、自然的可理解性问题以及人的命运问题是不可分离的。在确定性的原子世界里,人类自由的含义是什么呢?伊壁鸠鲁在给梅内苏斯(Meneceus)的信中写道:我们的意志是自主的和独立的,我们可以赞扬它或指责它。因此,为了保持我们的自由,保持对神的信仰比成为物理学家命运的奴隶更好。前者给予我们通过预言和牺牲以赢得神的仁慈的希望;后者相反,它带来一种不可抗拒的必然性。这一引语听上去是多么现代呀!西方传统中最伟大的思想家们,像康德。怀特海(Alfred North Whitehead)和海德格尔(Martin Heidegger),都一而再地感到,他们不得不在异化的科学与反科学的哲学之间作出悲剧性的选择。他们试图找到一些折衷办法,但没有一个办法证明令人满意。

  伊壁鸠鲁认为,他找到了解决这个二难推理困境的办法,他称之为倾向。卢克莱修(Lucretius)指出:当一些物体因它们自身的重量而通过虚空直线下落,在十分不确定的时间和不确定的地点,它们就会稍稍偏离其轨道,称之为改变了方向是恰如其分的。然而,没有任何机制可以解释这种倾向。毫不奇怪,它总是被看作是一种外来的、随意的因素。

  但我们的确需要这种新奇性吗?照波普尔的理解,对于赫拉克利特(Heraclitus)来说,真理就是抓住自然的基本演化,即把它作为内在的无限之物,作为它自身的过程加以表述。巴门尼德(Palmnides)则持相反观点。他在其关于存在独特实在的名诗中写道:它不是过去,也不是将来,正是现在,才是一切。

  有趣的是,伊壁鸠鲁的倾向在本世纪的科学中反复出现。爱因斯坦在他关于光子发射与原子能级间跃迁的经典论文(1916)里,清楚地表达了他对科学确定论的信念,尽管他假设这些发射由机遇所支配。

  希腊哲学不能解决这个二难推理。柏拉图(Plato)将真理与存在联系在一起,即与演化之外不变的实在相联系。然而他感到了这种状况的二难特征,因为它贬低生命和思想。在《智者篇》中,柏拉图断言我们既需要存在也需要演化。

  这种二元性直到现在仍在困扰着西方思想。如法国哲学家瓦尔(Jean Wahl)所强调的,西方哲学史总的来说是一个不愉快的历史,其特征是在作为自动机的世界与上帝主宰宇宙的神学之间不断地摇摆。两者都是确定论形式。

  这场争论在18世纪随着自然法则的发现发生了转折。最重要的例子就是牛顿的力和加速度关系定律。这一定律是确定性的,更重要的是,它是时间可逆的。一旦知道了初始条件,我们既可以推算出所有的后继状态,也可以推演出先前的状态。此外,过去和未来扮演着相同的角色,因为牛顿定律在时间t-t反演下具有不变性。这导致了拉普拉斯妖的出现:拉普拉斯(Pierre-Simon de Laplace)想象这个小妖有能力去观察宇宙的现今状态并预言其演化。

  众所周知,牛顿定律在20世纪已被量子力学和相对论所取代。然而牛顿定律的基本特性——确定性和时间对称性——却幸存下来。不错,量子力学不再涉及轨道而是与波函数相关(参见本章第IV节和第六章),但重要的是,我们注意到量子力学的基本方程式薛定谔方程同样是确定性的和时间可逆的。

  依靠此种方程,自然法则导致了确定性。一旦初始条件给定,一切都是确定了的。自然是一个至少在原则上我们可以控制的自动机。新奇性、选择和自发行为仅仅从人类的角度来看是真实的。

  许多历史学家认为,在这种自然观中,17世纪作为全能立法者的基督教上帝扮演了一个基本角色。神学和科学都对此表示许可。莱布尼兹(Gottfried von Leibniz)写道:对一点点物质,如上帝之目那样锐利的眼睛可以洞察宇宙中事物的整个过程,包括那些现存的、过去的和未来将发生的。自然之确定性定律的发现,就这样引导人们的知识更接近于神授的。不受时间影响的观点。

  受确定性时间可逆定律支配的被动自然概念对西方世界来说是非常明确的。在中国和日本,自然意味着“天然”。李约瑟(Joseph  Needham)在其杰作《东方与西方的科学和社会》中用反语告诉我们,中国学者欢呼耶稣会士宣告现代科学的胜利。对他们来说,自然受简单、可知的法则所支配的思想简直是人类中心蠢行的范例。按照中国传统,自然是自发的和谐;所以,谈论自然法则就是让某种外部权威凌驾于自然之上。

  在给伟大的印度诗人泰戈尔(Rabindranath Tagore)的信中,爱因斯坦写道:

  如果月亮在其环绕地球运行的永恒运动中被赋予自我意识,它就会完全确信,它是按照自己的决定在其轨道上一直运行下去。

  这样,会有一个具有更高的洞察力和更完备智力的存在物,注视着人和人的所作所为,嘲笑人以为他按照自己的自由意志而行动的错觉。

  这就是我的信条,尽管我非常清楚它不完全是可论证的。如果有人想到了最后一个精确知道和了解的结论,那将几乎没有能不受那种观点影响的人类个体,只要他的自爱不进行干扰。人防止自己被认为是宇宙过程中的一个无能为力的客体。但发生的合法性,例如它在无机界中多多少少地展露出来的,会停止在我们大脑的活动中起作用吗?

  对爱因斯坦来说,这似乎是与科学成就相一致的唯一主张。但这一结论现在如同它对伊壁鸠鲁一样难以接受。时间是我们基本的存在维度。自从19世纪以来,哲学变得越来越以时间为中心,我们在黑格尔(Georg Wilhelm Hegel)、胡塞尔(Edmund Husserl)、詹姆斯、柏格森(Henri Bergson)、海德格尔和怀特海等人的工作中不难看到这一点。对于像爱因斯坦这样的物理学家来说,这个难题已经解决了。但对哲学家而言,在人类存在的最基本意义上,它仍是认识论的中心问题。

  波普尔在《开放的宇宙——关于非决定论的论争》中写道:“我认为,拉普拉斯决定论似乎是由物理学中自明的确定论理论及它们那令人难以置信的成功所巩固的,它是我们认识和确证人的自由本性、创造性和责任中最顽固、最严重的困难。”对波普尔来说,“时间和变化的实在性是实在论的症结。”

  柏格森在一篇短文“可能与现实’中质问:“时间的角色是什么?……时间阻止了所有事物同时给出。……它难道不是创造性和选择的载体吗?时间的存在难道不是自然界中非决定论的证明吗?”对波普尔和柏格森而言,我们需要“非决定论”。但在决定论之外我们还能怎么做呢?詹姆斯在“决定论的困境”一文中透彻地分析了这一困难。”决定论符合于精确定义的机械论,就像被牛顿、薛定谔和爱因斯坦所表述的自然法则所显示的那样,它是“可数学化的”。相反,对决定论的偏离似乎是引入了像机会或者机遇这样一些拟人的概念。

  时间可逆的物理学观点与以时间为中心的哲学之间的矛盾,已经导致了一场公开的冲突。如果科学不能将人的经验的一些基本方面结合在一起,那么科学的目的是什么呢?海德格尔的反科学态度是众所周知的。尼采(Friedrich Nietzsche)断言,没有事实,只有解释。瑟尔(John R.Searle)指出,后现代哲学以其解构观点对西方关于真理性、客观性和实在性的传统提出了挑战。此外,演化和事件在我们关于自然的描述中的作用稳步增加。那么,我们怎么维持时间可逆的物理学观点呢?

  1994年10月,《科学美国人》杂志出了一期宇宙中的生命专刊。在所有层次上,无论是宇宙学、地质学、生物学,还是人类社会,我们都看到了与不稳定性和涨落相关的演化过程。因而我们不能回避这个问题:这些演化模式如何建立在物理学基本定律的基础之上?只有一篇由著名物理学家温伯格(Steven Weinberg)写的文章,与这一问题有关。他写道:我们虽然喜欢采用一种统一的自然现,但在宇宙中智慧生命的作用中仍遇到一个棘手的二元论。……一方面,薛定谔方程以一种完美的确定论方法描述了任何系统的波函数如何随时间而变化;另一方面,相当不同的一个方面,当有人进行测量时,又有一组原则规定如何用波函数推算各种可能结局的概率。

  难道这表明,通过我们的测量,我们能回到宇宙演化的初始状态吗?温伯格谈到一个棘手的二元性,一种在现在的许多出版物中都能找到的观点。例如,霍金在《时间简史》中鼓吹一种宇宙学的纯粹几何学解释。简括言之,时间就是空间的机遇。但霍金也明白这一解释是不够的。我们需要一个时间之矢来研究智慧生命。因此,像其他许多宇宙学家一样,霍金引入了所谓人存原理。但这一原理与伊壁鸠鲁的倾向一样武断,霍金对于人存原理如何能从静态的几何宇宙中产生出来没有作任何说明。

  如上所述,爱因斯坦试图以我们被视为纯粹的自动机为代价,来维护包括人类在内的自然的统一。这也是斯宾诺莎(Baruch Spinoza)的观点。但也是在 17世纪,笛卡儿(Rene Descartes)提出了另一种途径,它涉及二元论的概念:一方面是由几何学描述的物质 res extensa(广延物);另一方面是与res cogitans(思想物)相联系的心智。笛卡儿通过这种方法阐述了简单物理系统(如无摩擦的摆)的行为与人脑的运作之间的显著差异。奇怪的是,人存原理把我们带回到了笛卡儿的二元论。

  在《皇帝的新意》中,彭罗斯(Roger Penrose)写道:正是我们目前缺乏对物理学基本定律的认识,妨碍了我们用物理学或逻辑学术语去掌握心智这一概念。我们相信彭罗斯是对的:我们需要一种物理学基本定律的新表述。自然的演化方面必须用物理学基本定律来表达。只有这样,我们才能给伊壁鸠鲁的二难推理一个满意的回答。非决定论和时间不对称都必须在动力学中找到原因。那些不包含这些特征的表述是不完备的,正如那些忽略引力或电磁相互作用的物理学表述一样不完备。

  概率在从经济学到遗传学的大多数学科中起着至关重要的作用。然而,认为概率不过是一种心智状态的思想依然存在。我们现在必须走得更远,必须显示概率如何进入物理学(不管是经典物理学还是量子物理学)基本定律。目前,提出自然法则的新表述是可能的。我们通过提出新表述获得了更能接受的描述,在这一描述中有自然法则的位置,也有新奇性和创造性的位置。

  本章开头,我们提到过前苏格拉底学者。事实上,我们受益于人类历史形成以来古希腊人的两个理念:第一,是自然的“可理解性”,或用怀特海的话:“建立一个有条理的、逻辑的、关于普遍思想的必不可少的系统,使我们经验的每个要素都能得到解释。”第二,是建立在人的自由、创造性和责任感前提之上的民主思想。只要科学仍将自然描述为一架自动机,那么,这两个理念就是相互矛盾的。这正是我们要着手克服的矛盾。

II

  在第1节里,我们强调了时间和决定论难题形成了科学与哲学之间,或换言之,斯诺(C.P.Snow)的两种文化之间的分界线。但科学远不是坚如磐石的集团。事实上,19世纪给我们留下了双重遗产:诸如牛顿定律那样描述了一个时间可逆宇宙的自然定律;以及与熵相关联的一种演化描述。

  熵是热力学的一个重要组成部分,热力学是专门研究有时间方向的不可逆过程的一门学科。每个人在某种程度上都熟悉这些不可逆过程,像放射性衰变,或者是使流体的流动变慢的粘性。在时间可逆过程中,例如无摩擦摆的运动,未来和过去起着相同的作用(我们可以用未来的“+t替换过去的-t);不可逆过程与可逆过程相反,它有一个时间方向。过去准备的一块放射性物质会在将来消失。由于粘性,液体的流动将会随时间变慢。

  时间方向的原初作用在我们研究的宏观层次上,如化学反应或输运过程中,是很明显的。我们从会起反应的化学化合物开始。随着时间的推移,它们达到平衡,反应停止。与此相似,如果我们从一种不均匀的状态开始,扩散会将该系统引致均匀。太阳辐射就是不可逆核过程的结果。如果不考虑不计其数的决定天气和气候变化的不可逆过程,就不可能对生态圈进行描述。自然界既包括时间可逆过程,又包括时间不可逆过程,但公平地说,不可逆过程是常规,而可逆过程是例外。可逆过程对应于理想化:我们必须忽略摩擦以使摆可逆地摆动。此种理想化是成问题的,因为自然界中不存在绝对的虚空。如上所述,时间可逆过程由不因时间反演而改变的运动方程所描述,经典力学中的牛顿方程或量子力学中的薛定谔方程皆如此。然而对不可逆过程而言,我们需要一个打破时间对称性的描述。

  可逆过程和不可逆过程之间的差异,是通过与所谓热力学第二定律相联系的熵的概念引入的。早在1865年熵就由克劳修斯(Rudolf Julius Clausius)所定义(熵在希腊文中就指演化)。按照热力学第二定律,不可逆过程产生熵。相反,可逆过程使熵保持不变。

  我们将反复回到这个第二定律上来。现在,我们先回忆一下克劳修斯著名的表述:“宇宙的能量守恒。宇宙的熵增加。”熵的增加为发生在宇宙中的不可逆过程所致。克劳修斯的陈述是第一个以不可逆过程的存在为基础的宇宙演化观点的表述。爱丁顿(Arthur Stanley Eddington)把熵称作时间之矢。但从物理学基本定律来看,却不应当存在任何不可逆过程。因此,我们看到,我们从19世纪继承了两个相互矛盾的自然观,即以动力学定律为基础的时间可逆观点和以熵为基础的演化观点。怎样调和这些矛盾的观点呢?过了这么多年,这个难题依然与我们同在。

  对维也纳物理学家玻尔兹曼来说,19世纪是达尔文的世纪。达尔文在这个世纪把生命确立为一个永无终结的进化过程的结果,从而将演化置于我们对自然的认识的中心。然而,对大多数物理学家来说,玻尔兹曼的名字如今却与和达尔文的结论完全对立的结论联系在一起:玻尔兹曼被错怪为证明了不可逆性仅仅是一种错觉。玻尔兹曼的悲剧在于,试图在物理学中取得达尔文在生物学中取得的成就——却陷于绝境。

  乍看起来,19世纪的这两个巨人所用方法的相似之处是很显著的。达尔文表明,如果我们从研究群体而不是从研究个体开始,就可以理解依赖于选择压力的个体易变性如何产生漂变。对应地,玻尔兹曼认为,从个体的动力学轨道开始,我们就不能理解热力学第二定律及其所预言的熵的自发增加;我们必须从大的粒子群体开始。熵增是这些粒子间大量碰撞造成的全局漂变。

  1872年,玻尔兹曼发表了著名的H定理,它包括熵的一个微观类似物H函数。H定理说明每一个瞬间都会改变粒子速度的碰撞的结果。它表明,碰撞导致粒子群体的速度分布接近于平衡态(这被称为麦克斯韦一玻尔兹曼分布)。随着粒子群体趋近平衡态,玻尔兹曼的H函数减小,且在平衡态时达到其最小值,这个最小值意味着碰撞不再改变速度的分布。所以,对玻尔兹曼而言,粒子碰撞就是导致系统平衡的机理。

  玻尔兹曼和达尔文都用对群体的研究取代了对“个体”的研究,并表明细微的变化(个体的易变性或微观的碰撞)在发生了一段长时间之后会在一个集体层次上产生进化。(在后面的章节里,我们还要回到群体的作用上来。)恰如生物进化不能在个体层次上加以定义,时间流也是一个全局的性质(参见第五、第六章)。但在达尔文力图解释新物种的出现时,玻尔兹曼描述了趋向于平衡和均匀的演化。意味深长的是,这两种理论的命运呈鲜明对照。达尔文的进化论顶住猛烈的攻击而获胜,它仍然是我们认识生命的基础。相反,玻尔兹曼对不可逆性的解释却屈服于对它的批评,玻尔兹曼逐渐被迫退缩了。他不能排除“反热力学”进化的可能性,这种进化是熵减少和非均匀性自发增加(而不是被抹平)的结果。

  玻尔兹曼所面临的局面确实是激动人心的。他确信,为了认识自然,我们必须包括进化的特征,并且热力学第二定律所描述的不可逆性是迈向这一方向的关键一步。然而他又是动力学优良传统的继承人,认识到这个传统阻碍了他赋予时间之矢一个微观意义。

  从今天的有利观点来看,玻尔兹曼必须在他那物理学应当认识演化的信念和他对物理学传统的忠诚之间作出选择,这显得特别痛心。他的尝试以失败告终的事实在今天看来不言而喻。每个大学生都学过,轨道是时间可逆的,它允许未来和过去没有差别。正如庞加莱(Hedri Poincare)所述,靠时间可逆过程的轨道来解释不可逆性,虽然努力不计其数,但显然是一个纯粹的逻辑错误。假设我们将所有分子的速度符号都颠倒过来,于是系统进入它自己的过去。即使熵在速度反演之前是增加的,现在它也将会减少。这就是洛施密特(Joseph Loschmidt)的速度反演佯谬,它是玻尔兹曼不能排除反热力学行为的原因。面对严厉的批评,玻尔兹曼用一个基于我们缺乏信息的概率的解释取代了他对热力学第二定律的微观解释。

  在由大量的分子(1023个或阿伏伽德罗常量数量级)形成的复杂系统中,如气体或液体,显然我们不能计算每一个分子的行为。因此,玻尔兹曼引入了一个假设,即此种系统的所有微观状态都具有相同的先验概率。差异与由温度、压强和其他参量所描述的宏观状态有关。玻尔兹曼用计算产生宏观状态的微观状态的数量来定义每一个宏观状态的概率。

  玻尔兹曼可能让我们想象,例如,一个容器被分成彼此相通的两个相等的室,这个容器包含了数目众多的分子,设为N个。尽管我们不能跟踪每一个分子的轨迹,但通过测量一个宏观量,如每个室的压强,我们可以确定它所包含的分子数目。我们还可以设一个起点,即物理学家通常所称的初态,这里,两个室中的一个几乎是空的,我们能预期观察到什么呢?随着时间的推移,分子将向那个空室迁移。事实上,绝大多数所有可能的微观状态相当于那种每个室包含相同数目分子的宏观状况。这些状态就相当于平衡态,即两个室的压强相等。一旦达到了这种状态,分子将会继续从一个室迁移到另一个室,但平均来说,迁移到右室和迁移到左室的分子数将是相等的。撇开一些小的、短暂的涨落不谈,两个室中的分子数将随时间保持不变,平衡态将得以保持。不过,在这种论证中有一个根本的弱点,即自发的、长时期偏离平衡态并非是不可能的,纵如玻尔兹曼所言乃是不大可能的

  玻尔兹曼以概率为基础的解释,使我们观察的宏观特征成为我们观察到的不可逆性的原因。假如我们能够跟踪分子的个体运动,就会看到一个时间可逆的系统,这个系统中每个分子都遵从牛顿物理学定律。因为我们只能描述每个室中的分子的数目,所以,我们认为系统逐渐向平衡态演化。按照这种解释,不可逆性不是自然的基本法则,而仅仅是我们观察到的、近似的宏观特征的结果。

  策梅洛(Ernst Zermelo)引证庞加莱复规定理对玻尔兹曼论证洛施密特反演佯谬提出了批评。这一定理指出,如果我们等待足够长的时间,就会观察到动力系统自发地回归我们希望接近初态的一种状态。物理学家斯莫卢霍夫斯基(Roman Smoluchowki)断言,如果我们的观察延续不可计数长的时间,一切过程都将表现出是可逆的。这直接适用于玻尔兹曼的二室模型。经过足够长的时间以后,初始时的空室又会变成空的。不可逆性仅仅相当于一种不具有任何根本性意义的表象。

  我们现在回到第I节中所讨论的情况。我们所以与宇宙的演化特征相关,是由于我们自己的近似,要使这样一种论证可信,使不可逆性成为我们的近似的结果,第一步就是把第二定律的结果当作是无足轻重的和显而易见的。盖尔曼(Murray Gell-Mann)在他的近著《夸克和美洲豹》中写道:

  [对不可逆性的〕解释是,将钉子和便士混合起来的方法比把它们分开的方法更多;将花生酱和果冻相互混杂在一起的方法比将它们完全分离的方法多得多;把氧气和氮气混合起来的方法比把它们分离开来的方法更多。推而广之,机遇在起作用,具有某种秩序的封闭系统将很可能向提供了如此之多概率的无序转变。如何计算这些概率呢?一个被精确描述的全封闭系统可以以很多状态存在,这些状态被称为微观态。在量子力学中,这些态被理解为系统可能的量子态。这些微观态按照粗粒化所区分的不同性质而分类(有时称为宏观态)。于是,给定宏观态中的微观态被看作是等价的,它们只在数目上起作用。……

   熵与信息密切相关。事实上,滴可以被认为是无知 的量度。当只知道系统处于一个给定的宏观态时,这个宏观态的熵表征其中微观态无知的程度,但要计算出附加的信息量就需要对其进行详细说明,将宏观态中的所有微观态都看作同样概然的。

  类似的论证可以在许多讨论时间之矢的书中找到。我们认为这些论证都是站不住脚的。它们暗示了正是我们的无知,我们的粗粒化,导致了第二定律。对于一个消息灵通的观察者,如麦克斯韦所想象的“妖”,这个世界表现得完全地时间可逆。我们似乎是时间之父,演化之父,而不是时间之子。无论我们实验的精度如何,不可逆性总是存在。这表明,那种把这些性质归因于不完备信息的观点不足为信。值得注意的是,普朗克(Max Plank)早就反对描述第二定律的不完备信息的观点。他在《论热力学》一书中写道:

  第二定律的有效性以种种方式依赖于进行观测或实验的物理学家或化学家的技能,这种假设是荒唐的。第二定律的主旨与实验无关;这个定律简明指出,自然界中存在一个量,它总是在所有自然过程中以同样方式变化。

  这一普遍形式所述的观点可能正确,亦可能不正确;但无论它正确与否,它将依然如此,不管地球上是否存在思考和观测的生物,以及假定他们存在,亦不管他们是否能够以1位、2位乃至100位小数点的精度测量物理或化学过程的细节。这个定律的局限(如果有的话),必定同它的基本思想一样,存在于相同的范畴之中,存在于受观测的自然,而不在于观测者。这个定律的演绎所要求的人的经验是无足轻重的;因为,事实上,它是我们获取自然法则知识的唯一途径。

  然而,普朗克的观点仍然是孤立的。我们讲过,大多数科学家都把第二定律看作近似的结果,或看作主体观点向物理世界的入侵。玻恩(Max Born)就在一句名言里断言,不可逆性是无知介入物理学基本定律的后果。

我们认为,用传统方式表述的物理学定律描述了一个理想化的、稳定的世界,一个与我们所生活的动荡的、演化的世界完全不同的世界。抛弃不可逆性平庸化的主要原因是,我们不再把时间之矢仅仅与无序增加相联系了。非平衡物理学和非平衡化学的最新进展就指向了相反的方向。它们明确表明,时间之矢是秩序的源泉。这在19世纪以来就已周知的诸如热扩散这样的简单实验中已经表现得很清楚了。我们考察一个包含两个组分(氢气和氮气)的容器,加热容器的一端而冷却另一端(见图1.1) 。当其中一个组分充满热的部分而另一个组分充满冷的部分时,系统演化到一个定态。不可逆的热流产生的熵导致建序过程,这种过程离开热流是不可能发生的。不可逆性既导致有序也导致无序。

 


  不可逆性的这种建设性作用在非平衡导致新形式的相干那种远离平衡的情况中甚至更为显著。(在第二章,我们要回到非平衡物理学。)我们现在知道,正是通过与时间之矢相联系的不可逆过程,自然才达到其优美和复杂之至的结构,生命只有在非平衡的宇宙中才有可能出现。非平衡导出了一些概念,这些概念我们将在第二章详细介绍,如自组织和耗散结构。在《从存在到演化》一书中,基于过去数十年非平衡物理学和非平衡化学的显著发展,我们总结了以下的结论:

  1.不可逆过程(与时间之矢相关)像物理学基本定律描述的可逆过程一样真实,它们并非相当于加在基本定律上的近似。

  2.不可逆过程在自然中起着基本的建设性作用。

  这些概念对关于动力学系统的新潮思想有什么影响呢?玻尔兹曼十分清楚,在经典动力学中根本不存在不可逆性的类似物,于是,他断言,不可逆性只能从关于我们宇宙早期阶段的假定中导出。我们可以维持我们对动力学的通常表述,但我们必须用适当的初始条件来补充它们。在这种观点看来,原初宇宙是非常有组织的,从而处于一种不大可能的状态——一种许多近著中仍然接受的看法。我们宇宙中盛行的初始条件导致许多有意义的、基本上悬而未决的难题(见第八章),但我们认为玻尔兹曼的论证不再站得住脚了。不管过去如何,目前存在着两类过程:现有动力学的应用已证明很成功的时间可逆过程(亦即在经典力学中月球的运动或在量子力学中氢原子的运动),以及过去和未来之间存在不对称性的不可逆过程(如加热情形)。我们的目标是提出一种新的物理学表述,它与任何宇宙学考虑无关地解释这些性态之间的差异。对于不稳定系统和热力学系统,这确实可以做到。我们可以克服时间可逆动力学定律与以熵为基础的自然演化观之间表面上的矛盾。但我们不要超越我们自己。

  大约200年前,拉格朗日(Jossph-Louis Lagrange)以牛顿定律为基础把分析力学描述为数学的一个分支,在法国科学文献中,它常被称作理性力学。在这种意义上,牛顿定律确定了理性的定律并代表一种绝对普遍性真理。自从有了量子力学和相对论,我们开始知道这并不是那么回事。现在,将类似的绝对真理地位赋予量子理论的诱惑又很强烈。在《夸克和美洲豹》一书中,盖尔曼断言,量子力学不仅仅是一个理论,它更是所有当代物理学都必须适合的框架。真的是这样吗?我已故的朋友罗森菲尔德(Leon Rosenfeld)指出:每一个理论都是以通过数学的理想化所表达的物理概念为基础的,它们被引进用以给出对物理现象的恰当描述。如果不知道其有效范围,没有一个物理概念是被充分定义的。

  我们将要描述的,正是物理学基本概念,诸如经典力学中的轨道或量子理论中的波函数,所需的这一“有效范围”。这些界限与我们将在下一节中简要介绍的不稳定性和混沌概念是相关的。一旦我们包括了这些概念,就得到了自然法则的新表述。这个法则不再建立于确定性定律情形下的确定性,而是建立于概率之上。而且,在这种概率表述中,时间对称性被打破了。宇宙的演化特性必然在物理学基本定律之中得到反映。记住怀特海所叙述的关于自然可理解性的思想(见第1节):我们经验中的每一个要素都必须被包括在一个由普遍概念组成的连贯系统中。以这种自然法则的重新表述为基础,我们现在就可以完成玻尔兹曼在一个多世纪前所开拓的工作。

  值得注意的是,许多大数学家,如波莱尔(Emile Borel),也明白有必要克服决定论。波莱尔指出,对孤立系统(如月球-地球系统)的考察总是理想化作法,只要我们离开这一还原论观点,决定论就会垮台。这正是我们的研究所要显示的。

III

  每个人在一定程度上都熟悉稳定系统和不稳定系统的区别。例如,考虑一个摆,假设它最初处在平衡态,此时它的势能最小。若小小的扰动之后它返回平衡态(参见图1.2),这系统表示一个稳定平衡态。相反,若我们把一支铅笔用头部立起来,则最小的扰动都会使它倒下,这给我们一个不稳定平衡态的模型。


  在稳定运动和不稳定运动之间有一个基本的差别。简言之,稳定动力学系统是初始条件的小变化产生相应小影响的系统;但对一大类动力学系统来说,初始条件的小扰动会随时间被放大。混沌系统是不稳定运动的极端例子,因为不同初始条件确认的轨道,不管多么接近,都会随时间推移指数地发散。这就叫对初始条件的敏感性。一个通过混沌而放大的经典例证是蝴蝶效应:蝴蝶在亚马孙流域扇动它的翅膀就可能影响到美国的天气。我们在后面还会看到混沌系统的一些例子(参见第三章和第四章)。

  确定性混沌这一术语也已进入混沌系统的讨论。如牛顿动力学中的情形所示,运动方程确实是确定性的,即使某个特定的结局是貌似随机的。不稳定性这一重要角色的发现,导致了以前当作是一个封闭学科的经典动力学的复苏。事实上,直到最近,牛顿定律所描述的所有系统都被认为是相似的。当然,众所周知,下落石头的轨道问题比“三体问题”,如太阳、地球和木星的环绕问题,要容易解决得多。然而这一问题更多地被认为是一个单纯的计算问题。到19世纪末,庞加莱才表明事实并非如此。问题取决于动力学系统是否稳定而有根本的差异。

  我们提到了混沌系统,但还有其他类型的不稳定性有待考察。让我们首先用定性的术语,在不稳定性导致动力学定律范围扩展的意义上进行描述。在经典动力学中,初始条件由位置q和速度v(或者动量p)确定。[注] 一旦这些量已知,我们就可以用牛顿定律(或任何其他的动力学等效表述)来确定轨道。我们可以在坐标和动量所形成的空间中用点(q0,p0)表示动力学状态,这就是相空间(图1.3)。除了考虑单个系统,我们也可以考虑一簇系统——“系综,它自本世纪初爱因斯坦和吉布斯(Josiah Willard Gibbs)的先驱性工作以来被如是称呼。

  [注]为简便起见,甚至我们考虑的系统由多个粒子组成时,我们仍使用一个字母。


  在这里,复述一下吉布斯的《统计力学基本原理》一书著名前言中的部分内容是有益的:

  我们可以想象许多性质相同的系统,这些系统在给定时刻的构造和速度不同,不仅仅是细微地不同,而且它所以不同乃是为了包含每一种可想象的构造和速度组合。我们在此提出问题,不是通过相继的构造跟踪一个特定系统,而是确定整个系统在任何给定时刻如何分布于各种可信的构造和速度之中,其时分布已形成了一段时间。……

  经验上确定的热力学定律表达大量粒子系统的近似的、可能的行为,或更准确地说,它们把此种系统的力学定律表达为好似多个人,这些人没有本事把握与单个粒子相关的数量级的量,他们也不能足够多地重复其实验,以获得哪怕是最可能的结果。


 


  吉布斯通过系综方法把群体动力学引入了物理学。系综由相空间中的点“云”来描述(参见图1.4)。这种点云由一个有简单物理解释的函数ρq,p,t)来描述:即在时刻t,在一个围绕着点(q,p)的相空间小区域内找到一个点的概率。轨道对应于一种特殊情形,其中函数ρ除在点(q0,p0)以外处处都为零,这种状况由ρ的一个特殊形式来描述。那些除了在一个点外,在其他各处都为零的函数叫做狄拉克函数δx)。函数δx-x0)对所有xx0的点都为零。因此,对零时刻的单个轨道来说,分布函数ρ的形式是ρδq-q0δp-p0)。[注]以后我们还会回到δx)函数的特性上来。

  [注]我们取x=x0时,函数δx-x0)向无穷大发散。所以,与连续函数x或Sinx相比,δ函数具有反常的特性。它被称为广义函数或广义分布(不要与概率分布ρ相混淆)。广义函数往往与检验函数中φx)一同使用,检验函数亦是连续函数[即 dxφ(x)δ(x-x0)=φ(x0)]。还应注意,在时刻t,对于以速度p0/m运动的自由粒子,我们有概率 ρ=δ(p-p0)δ(q-q0-p0t/m), 因为动量保持不变,坐标随时间呈线性变化。这两个描述层次,个体层次(对应于单个轨道)和统计层次(对应于系综)是等价的。

  但是如吉布斯所清楚阐述的,当得不到精确的初始条件时,系综的方法不过是一个方便的计算工具而已。在他们看来,概率表达的是无知,是信息不足。甚至从动力学观点来看,对个体轨道和概率分布的讨论总是被认为是等价的问题。我们可以从个体轨道出发,然后推出概率函数的演化,反之亦然。概率ρ只是对应于轨道的叠加,并不导出任何新的特性。

  真的总是如此吗?这对我们不期待任何不可逆性的简单稳定系统来说的确是如此。吉布斯和爱因斯坦是对的,个体观点(就轨道而言)和统计观点(就概率而言)是等价的。这很容易证实,我们将在第五章回到这一点上来。不过,这对不稳定系统来说也是对的吗?在分子水平上涉及不可逆过程的所有理论,如玻尔兹曼的动理学理论,这些理论都涉及概率而不涉及轨道,又会怎样呢?这又是因为我们的近似,我们的粗粒化吗?那我们如何解释动理学理论对稀薄气体诸如热导率和扩散等许多性质定量预言的成功,所有这些都被实验所证实呢?

  庞加莱对动理学理论的成功倍加赞许,他写道:“也许气体动理学理论会作为一种模型使用……物理学定律将有一种全新的形式,它们将具有统计的特征。”这确实是先知之言。玻尔兹曼引进概率作为经验工具,这是特别大胆的一步。100多年以后的现在,我们开始理解概率概念在我们从动力学走向热力学时如何形成。不稳定性破坏了描述的个体层次与统计层次的等价性,于是概率获得了一个内在的动力学意义。这一认识导出了一种新型物理学,即本书的主题——群体物理学。

  要解释我们说的是什么含义,考虑一个简化的混沌例子。假设在如图1.4所示的相空间内,我们有两种记为+或-的运动(亦即运动),这样我们就有两种用图1.5和图1.6表示的情形。在图1.5中,相空间里有两个不同的区域,一个对应于运动-,另一个对应于运动+。若我们不管靠近边界的区域,则每一个`- 被- 包围,每一个+ 被+ 包围,这对应于稳定系统。初始条件的小变化不改变结果。

 


 


  相反,在图1.6中,每一个+ 被- 包围,反之亦然。初始条件的微小变化被放大,故这个系统是不稳定的。这种不稳定性的一个首要结果是,现在轨道变得理想化了。我们不再能准备单一轨道,因为这意味着无限的精度。对稳定系统而言,这没有什么意义,但对于具有对初始条件敏感性的不稳定系统,我们只能给出包括多种运动形式的概率分布。这种困难仅仅是一个操作困难吗?是的,如果我们考虑轨道现在变成不可计算的话。但还有更多的难题:概率分布允许我们在动力学描述的框架内把相空间复杂的微观结构包括进去。因此,它包含附加的信息,此种信息在个体轨道的层次上不存在。我们将在第四章看到,这具有根本性的结论。在分布函数ρ的层次上,我们得到一个新的动力学描述,它允许我们预言包含特征时间尺度的系综的未来演化,这在个体轨道层次上是不可能的。个体层次与统计层次间的等价性实实在在地被打破了。对于不可约概率分布ρ,我们得到新的解,因为它们不适用于单个轨道。混沌定律不得不在统计层次上进行表述,这就是我们在前面一节中谈到不能以轨道来表达的动力学的推广的含义。这就引出了一种我们在过去从未遇到过的情形。初始条件不再是相空间中的点,而是由ρ在初始时刻t=o时所描述的某个区域。因此,我们有一个非局域描述。轨道依然存在,但它们是随机的概率过程的结局。不论如何精确地配合我们的初始条件,我们都得到不同的轨道。而且,我们将看到,时间对称性被打破了,因为过去和未来在统计表述中扮演着不同的角色。当然,对稳定系统而言,我们通过确定性轨道回到通常的描述。


 


  为什么要把那么多时间花在给自然法则一个包括不可逆性和概率的推广上?其中的一个原因是思想意识原因——意欲在我们对自然的描述中实现一个准神灵的观点。然而,这里仍然存在一个专门的数学难题。我们的工作基于一个在最近几十年才达到前沿的数学领域——泛函分析——的新进展。我们将看到,我们的表述需要一个扩展的泛函空间。这个新的数学领域目前在认识自然法则中扮演着十分重要的角色,它使用被芒德布罗(Benoit Mandelbrot)称为分形的广义函数。我们需要一种神灵观点来保留确定论思想。但没有任何人的测量,没有任何理论预言能以无限精度给我们初始条件。

  考虑拉普拉斯妖在确定性混沌的世界里变成什么,是有意义的。除非他以无限精度知道初始条件,否则他不再能预测未来。只有那样,它才能继续使用轨道描述。但有一种更强大的不稳定性,无论初始描述的精度如何,它都会使轨道破坏。这种形式的不稳定性极其重要,因为它既适用于经典力学又适用于量子力学。

  我们的故事确实始于19世纪末庞加莱的工作。按照庞加莱,动力学系统由其粒子的动能加上粒子相互作用产生的势能来描述。一个简单的例子是自由的无相互作用的粒子。在这里没有势能,而且轨道的计算是平凡的,这样的系统被定义为可积的。庞加莱问,是不是所有的系统都可积?我们能否选择适当的变量来消去势能?通过显示这通常是不可能的,他证明了动力学系统基本上都是不可积的。

  在此有必要稍加停顿,仔细思考一下庞加莱的结论。假设庞加莱证明所有的动力学系统都是可积的,这将意味着所有的动力学运动与自由无相互作用粒子是同构的。这将没有时间之矢的立足之地,因而也就没有自组织和生命本身的立足之地。可积系统描述的是一个静态的、确定性的世界。庞加莱不仅证实了不可积性,而且指明了造成不可积性的原因,即自由度之间共振的存在。我们将在第五章更详细地看到,每一种运动形式都对应于一个频率,这方面最简单的例子是给走质点和中心点的谐振子。质点受到的力与它离开中心点的距离成正比,如果我们将质点从中心拉开,它会以一个确定的频率振动。正是通过这些频率,我们得到共振这个对庞加莱定理十分重要的概念。

  我们都多多少少熟悉共振的概念,当我们迫使弹簧离开其平衡位置,它将以一个特征频率振动。现在给弹簧施加一个外力,这一外力具有可变的频率。当弹簧的频率与外力的频率二者有一个简单的数字比率(即其中一个频率是另一个频率的数倍)时,弹簧的振幅将急剧加大。当我们在一件乐器上演奏一个音符时会发生同样的现象。我们会听见谐音。共振“耦合”声音。

  现在考虑由两个频率所刻画的系统。根据定义,只要n1 ω1n2 ω20,其中nl和n2都是非零整数,我们就得到了共振。这表明ω1/ω2=-n2/n1,即频率之比为有理数。庞加莱已表明,共振在动力学中带来具有危险的分母1/(n1ω1+n2ω2)的项,只要有共振(即相空间中的点满足n1ω1+n2ω2=0),这些项就会发散。其结果是,我们计算轨道时会碰到障碍。

  这就是庞加莱不可积性的来源。18世纪的天文学家就已知道小分母问题,但庞加莱定理表明,这一困难是绝大多数动力学系统所共有的。庞加莱将其称为动力学的普遍问题。然而,在相当长的时期里,庞加莱结果的重要性被忽视了。

  玻恩写道:“如果自然界以多体问题的解析困难为后盾,使自己强大起来以抵御知识进步,是十分不同寻常的。”很难相信一种技术上的困难(由于共振而导致的发散)能改变动力学的概念结构。我们现在从一个不同的角度来看这一问题。对我们来讲,庞加莱的发散是一个良机。事实上,我们现在可以超出庞加莱的消极陈述,并表明不可积性和混沌一样为动力学定律的新统计表述铺平了道路。由于科尔莫戈罗夫(Andrei N.Kolmogorov)及随后阿诺德(Vladimir IgorevichArnold)、莫泽(Jurgen Kurt Moser)的工作(所谓 KAM理论),人们终于理解了不可积性,这在庞加莱之后又花了60年的时间。不可积性不是玻恩所言自然界抵制知识进步的令人沮丧的表现,而是动力学的新起点。

  KAM理论处理共振对轨道的影响。频率。通常依赖于动变量如坐标和动量的值,它们在相空间不同点的取值不同。其结果是,有些点由共振来刻画,而另一些点则不然。对于混沌来讲,这又将使其相空间达到特别复杂的程度。按照KAM理论,我们观察到两类轨道:正经的确定性的轨道,以及与共振相关联的在相空间无规律地漫游的散漫的轨道。

  这一理论另一个重要结果是,当我们增加能量值时,随机性占据的区域会随之扩大。对于某个临界能量值,会出现混沌:随着时间的推移,我们看到相邻轨道呈指数发散。而且,对于充分发展的混沌来说,由轨道产生的点云会导致扩散,但扩散与我们将来达到均匀性的方法相关联。它是一个产生熵的不可逆过程(见第1节)。虽然我们从经典动力学出发,我们现在却观察到时间对称性的破缺。这如何可能,正是我们为了克服时间佯谬而必须解决的主要问题。

  庞加莱共振在物理学中扮演着基本角色。光的发射或吸收是共振所致,因为它是使相互作用的粒子系统达到平衡的途径。相互作用的场也导致共振。事实上,很难在经典物理学或量子物理学中找到一个共振在其中没有扮演显著角色的重要问题。但是,我们如何克服与共振相关联的发散呢?对此已取得了一些重要进展。如在第III节中,我们必须区分个体层次(轨道)和统计层次(由概率分布ρ描述的系综)。在个体层次上我们有发散,但这些发散在统计层次上可以得到解决(参见第五、第六章),共振在统计层次上产生与共鸣导致的伴声大致类似的事件耦合。其重要特点是,出现了与轨道描述不相容的、新的非牛顿项。这并不奇怪。共振不是局域事件,因为它们并非在给定地点或给定时刻发生。共振蕴涵着非局域描述,所以不能包含在与牛顿动力学相关联的轨道描述之中。我们将要看到,共振导致了扩散运动。当我们从相空间的一个点P0出发,我们不再能肯定地预言经过一段时间。之后其新位置Pt。简言之,初始点 P0以明确的概率产生许多可能的点P1,P2,P3


 


  在图1.7里,区域D中的每个点有一个在时刻。出现的非零概率或明确的转移概率。这种情况类似于无规行走布朗运动的情形。在最简单的情况里,这一条件可以用粒子在一维点阵中的运动来说明,点阵以规则的时间间隔作一步转移(参见图1.8)。


 


  在每一步,质点往左去和往右去的概率均为1/2。在每一步,未来都是不确定的。从一开始,就不可能谈到轨道。从数学上来讲,布朗运动由扩散型方程(称为福克尔-普朗克(Fokker-Planck)方程)描述。扩散是有时间方向的。如果我们从位于同一源的点云出发,随着时间的推移,这个点云将分散,一些粒子出现在远离源头的地方,另一些则出现在离源头较近的地方。令人瞩目的是,从经典动力学出发,共振精确地导出了扩散项,也就是说,共振甚至在经典力学框架中引入了不确定性,并打破了时间对称性。

  对于可积系统而言,当这些扩散因素不存在时,我们就会回到轨道描述,但是总体上,动力学定律必须在概率分布层次上进行表述。因而,基本问题是:在什么情况下,我们可以预期成为可观察量的扩散项?当做到这一点时,概率变成自然的基本属性。这是有关确定牛顿动力学有效范围的问题(或有关我们下一节将要考虑的量子理论的有效范围问题),它不啻是一次观念上的革命。几个世纪以来,轨道被看作是经典物理学基本的、原始的客体。相反,我们现在则把轨道看作是共振系统的有效范围,在第五章我们将回到这个问题上来,在第六章针对量子力学讨论一个平行的问题。然而,此时我们先给出一些暂时的回答。对于瞬时相互作用(一束粒子与障碍物碰撞并逸出),扩散项可以被忽略;但对于持续相互作用(一束稳定的粒子流落在障碍物上),扩散项就起支配作用了。在计算机模拟时,如同在真实世界中一样,我们可以再现这两种情况,因而可以检验我们的预言。结果毫不含糊地表明,对持续相互作用出现扩散项,于是导致牛顿力学描述以及正统的量子力学描述的失败。在这两种情况下,与在确定性混沌中一样,我们都得到“不可约的”概率描述。

  但还有另一个更值得注意的情况。宏观系统通常用热力学极限来定义,按照热力学极限,无论粒子数N还是体积V都变大。我们将在第五章和第六章研究这一极限。在与这一极限相联系的现象的观测中,物质的新属性变得显而易见。

  如果我们仅仅考虑少量粒子,就不能说它们是否形成液体或气体。物质的状态和相变最终由热力学极限所定义。相变的存在表明,当我们采取还原论者态度时必须谨慎行事。相变对应于突现属性。它们在单个粒子的层次上毫无意义,只有在群体层次才有意义。这种争论在某种程度上与基于庞加莱共振的争论类似。持续相互作用意味着我们不能将系统的一部分取出来孤立地加以考虑。正是在这种全局层次,在群体层次上,过去和未来之间的对称性被打破了,科学可以承认时间流。这解决了一个长期存在的难题。实际上,在宏观物理学中,不可逆性和概率是最明显不过的。

  热力学适用于不可积系统。这意味着,我们不能用轨道来解决动力学难题,但我们能用概率解决它。因此,如同确定性混沌情形那样,经典力学的新统计表述导致数学框架的拓展。这在某种程度上不由得让我们回想起广义相对论。像爱因斯坦所表明的那样,为了包含引力,我们必须从欧几里得几何转向黎曼几何。在泛函分析中,所谓希尔伯特空间扮演着特殊的角色,它将欧几里得几何扩展到包含无穷维数“函数空间”的情形。传统上,量子力学和统计力学都应用了希尔伯特空间。为了得到对不稳定系统和热力学极限有效的新表述,我们必须从希尔伯特空间转向更普遍的泛函空间。这一观点将在第四到第六章中详加解释。

  自本世纪初以来,我们已经习惯于在我们面对微观客体,如原子和基本粒子时,或者当我们处理天体物理维度时,产生经典力学有待扩展的想法。而不稳定性同样要求扩展经典力学则很出乎意料。我们现在将转入的量子力学情形十分类似。共振所致的不稳定性在改变量予理论的表述中同样扮演着一种基本角色。

IV

  在量子力学中,我们碰到了一个很奇怪的情况。众所周知,这一理论在它的所有预言方面都取得了引人注目的成功。然而,量子力学的表述完成已有60多年的历史,但有关其含义和范围的讨论依然热烈如初,这在科学史中是很独特的。尽管它取得了许多成功,很多物理学家仍有一种不安的感觉。费恩曼(Richard Feynman)就一度认为无人真正理解量子理论。

  这儿,基本量是波函数Ψ,它在某种程度上起轨道在经典力学中所起的作用。实际上,量子理论的基本方程(薛定谔方程)描述波函数的时间演化。它将给定初始时刻t0的波函数Ψ(t0)转换为t时刻的波函数Ψt),这就如同在经典力学中,轨道从一个相点导出另一个相点。

  和牛顿方程一样,薛定愕方程是确定性的,且是时间可逆的。再次如同在经典动力学中一样,在量子力学的动力学描述和与熵相关联的演化描述之间存在着一条鸿沟。波函数Ψ的物理解释是它对应着概率幅。这表明|Ψ|2=ΨΨ*Ψ既有实部也有虚部,Ψ*Ψ的复共轭)是概率,我们再次用ρ来标记。还存在更普遍的概率形式,它对应于通过各种波函数的叠加而得到的系综。与从单个波函数得到的纯粹倩形相对,它们被称为混合情形。

  量子理论的基本假设是:正如经典力学中的每一个动力学问题通常与轨道动力学相联系一样,每一个动力学问题可以在概率幅层次上加以解决。但奇怪的是,为了把明确定义的属性赋给物质,我们不得不超出概率幅,我们需要概率本身。为了理解这一困难,我们考虑一个简单的例子。假设能量可以取两个值EI和EZ,相应的波函数为u1和u2。现在考虑线性叠加Ψc1u1+c2u2。这样,波函数在两个层次上参与,系统既不在层次1也不在层次2,而是处于一种居间态。我们现在测量与Ψ相关的能量。按照量子力学,我们得到与概率幅的平方|c1|2和|c2|2给出的概率相联系的E1或E2

  我们最初从单个波函数Ψ开始,但却仍然以两个波函数u1和u2的混合物结束。这通常称为波函数的归约坍缩。我们必须从由波函数Ψ所描述的潜在性转向我们可以测量的实在性。在量子理论的传统语言中,我们是从纯粹状态(波函数)转向系综,即混合物。但这如何可能呢?如前所述,薛定谔方程将一个波函数变换为另一个波函数,而不是变换为系综,这一直被称为量子佯谬。有人认为,从潜在性向实在性的转变是我们的测量造成的。这是本章第1节引述的温伯格的一段话以及相当多的教科书中所表达的观点。它是与经典力学中的时间佯谬提供的解释同样类型的解释。亦是在那种情形里,很难理解人的行为,譬如观察,怎么就能造成从潜在性向实在性的转变。倘若没有人类的存在,宇宙的演化会不一样吗?戴维斯(Pani C.Davies)在《新物理学》一书的导论中写道:

  最低限度,量子力学提供了一个非常成功的方法来预言对微观系统的观察结果,但当我们问在进行观察时实际会发生什么,我们得到一派胡言!打破这一佯谬,所  做的努力既有埃弗里特(Hugh Everett)的离奇的多世界解释,也有冯·诺伊曼(JOIm von Ne。)和维格纳(Eugene Wigner)乞灵于观察者意识的神秘思想。经过半个世纪的争论,这一量子观测争论仍旧热烈如初。关于至小和至大的物理学问题是难以克服的,但这一前沿——意识和物质的界面——可能会成为新物理学最富挑战性的遗产。

  这个“意识和物质的界面”也处于时间佯谬的核心。如果仅仅由于我们人的意识干预了一个由时间对称定律支配的世界,时间之矢才存在,那么知识的获取就会因为任何测量本身已蕴涵着一个不可逆过程而变得自相矛盾。如果我们想了解关于一个时间可逆的客体的任何知识,无论是在仪器水平还是在我们自己的感官机理水平,我们都无法回避测量的不可逆过程。因此,在经典物理学中,当我们问如何依靠基本的时间可逆定律去理解“观察”,正如戴维斯所说的那样,我们得到“一派胡言”,但是在经典物理学中,不可逆性的这种入侵却被看作是一个次要问题。经典动力学的大成功对其客观属性来说是毋庸置疑的,而量子理论中的情况则截然不同。在此,量子理论的结构明确表明,在我们对自然的基本描述中必需包含测量。因此,看来我们拥有一个不可约的二元性:一方面,是时间可逆的薛定谔方程;另一方面则是波函数的坍缩。

  大物理学家泡利(Wolfgang Pauli)一再强调量子力学的这种二元性。他在1947年给菲尔(Markus Fierz)的一封信中写道:有一些事情只在作出观察时才真正发生,并与……熵的必然增加相关。在多次观察间隙,则什么也不会发生。然而,不管我们是否观察它,我们书写用的纸照样老化发黄。

  这一佯谬如何解决?在戴维斯提到的极端立场之外还提出过许多方案,例如玻尔(Niels Bohr)的哥本哈根诠释[注] 玻尔主张,必须用经典态度对待测量仪器。正是我们这些属于宏观世界的人需要一个中间人与微观世界联系,恰如在一些宗教中我们需要神职人员或萨满教僧与彼岸世界进行交流一样。

  [注]我们极力推荐雷的书《量子物理学》和戴维斯编《新物理学》一书中希莫尼(A.Shimony)的文章量子力学的概念基础。令人费解。

  但这并不解决问题,因为哥本哈根诠释未开出任何我们可以用作测量仪器来刻画物理系统的药方。玻尔回避了基本问题:何种动力学过程造成波函数的坍缩。玻尔最亲密的合作者罗森菲尔德清醒地意识到了哥本哈根诠释的局限。他认为,这一诠释仅仅是第一步,下一步应给测量仪器的作用一个动力学解释。他的坚强信念使一些文章与我们自己研究小组一样参与我们目前的探索之中。

  另一些物理学家提出,将测量仪器与某种“宏观”仪器视为等同。在他们看来,宏观仪器的概念与近似联系在一起。出于实际的原因,我们不能测量宏观仪器的量子属性。更有甚者,还经常有人提出,我们应该把仪器看作一个与整个世界联系在一起的“开放的”量子系统。来自环境的偶然扰动和涨落使我们能够完成测量。但“环境”指什么?谁在客体与其环境之间作出区分?这一区分仅仅是冯·诺伊曼方案的一个修订版,这一方案认为,通过我们的行为和观察,正是我们产生了波函数的坍缩。

  贝尔(John Bell)在他的杰作《量子力学中之可言说与不可言说》中强调了消除与观察者相联系的主观因素的必要性,这也是盖尔曼和哈特尔(James B.Hartle)最近工作的一个重点。他们认为,诉诸于与宇宙学相关联的观察者甚至更是谁在测量宇宙?对这一方法的详细讨论已超出了本书范围,然而,简要介绍他们的最新成果是妥当的。

  盖尔曼等人给宇宙的量子力学史引入一种粗粒描述,这种描述把量子力学的结构从概率幅理论转换到概率本身理论。作为实例,我们再次考虑由波函数u1和u2叠加得到的波函数Ψc1u1+c2u2。为简便起见,假设Ψ是实数,取平方,我们得到Ψ2=c12u12+c22u22+2c1c2u1u2。假设我们可以忽略称为干涉项的双积,那么量子理论的一切奥秘都消失了。概率今是概率的简单加和。不再有必要谈论从潜在性向实在性的转变了,我们可以直接与概率打交道。但这又如何可能呢?干涉项在量子理论的许多应用中扮演着核心角色。然而,压制干涉项正是盖尔曼和他的同事所提议的。为什么在一些情况下我们需要包括干涉项的精确的细粒量子描述,而在另一些情况下又需要压制干涉项的粗粒描述?谁真正来进行粗粒化呢?用近似来讨论解决基本问题合理吗?这又如何与我们在第H节引用过的盖尔曼自己的说法,量子力学是所有理论都必须适合的框架的说法相一致呢?

  然而,这个领域另有一些人指望,通过以一种现代形式重新引人伊壁鸠鲁倾向来解决这一量子力学难题。事实上,吉拉尔迪(Giancarlo Ghirardi)、里米尼(Emanuele Rimini)和韦伯(Tullio Weber)提出,在某个时刻,出于某种未知的原因,会出现波函数的自发坍缩。机遇概念在这里进入讨论,但没有作为解围之神(dens ex machina)的任何进一步的正当理由。这一新倾向为什么适用于某些情况而不适用于其他一些情况?

  所有这些阐明量子理论概念基础的尝试特别使人不满的是,它们没有作出任何可以实际检验的新预言。

  我们自己的结论与这一领域中的其他许多专家,如美国的希莫尼(Abner Shimony)和法国的德斯帕格纳特(BernarddEspagnat)的结论不谋而合。在他们看来,必须作出一些根本的革新,这些革新将保留量子力学所有的成就,但应消除与量子理论二元结构相关联的困难。请注意测量难题不是孤立的。正如罗森菲尔德强调的那样,测量与不可逆性相联系。但是在量子力学中,不管它们是否与测量联系在一起,都没有不可逆过程的位置。冯·诺伊曼、泡利和菲尔在几十年前就已确立,(在遍历理论的框架里)难以将不可逆性引入量子理论。像在经典力学中那样,他们力图通过粗粒化来解决这个难题,但他们的努力不成功。这可能是冯·诺伊曼最终采纳二元表述的原因:一边是薛定谔方程,另一边是波函数坍缩。只要坍缩不用动力学术语来描述,这就无法令人满意。这就是我们自己理论所取得的成就。不稳定性再次扮演着核心角色。然而,受指数发散轨道影响的确定性混沌在此不适用。在量子力学中,没有什么轨道。因此,我们必须通过庞加莱共振来考察不稳定性。

  我们可以把庞加莱共振结合进统计描述,并用波函数导出在量子力学范围之外的扩散项。统计描述再次基于概率。(在量子力学中也称为密度矩阵,参见第六章)的层次上,不再基于波函数之上。通过庞加莱共振,我们不依靠任何非动力学假设,就实现从概率幅向概率本身的转变。

  如同在经典动力学中一样,基本问题是:这些扩散项何时是可观察量?传统的量子理论的局限性是什么?回答与经典动力学中的回答相似(参见第III节)。简单说来,正是在持续相互作用中扩散项成为支配项(参见第七章)。像在经典力学中一样,这个预言已通过数值模拟得到了证实。只有超出还原论描述,我们才能给出一个量子理论的实在论诠释。波函数并没有坍缩,因为动力学定律现在在密度矩阵ρ的层次上,而不是在波函数Ψ的层次上。而且,观察者不再充当任何特别角色,测量仪器必须提供一个破缺的时间对称性。对于这些系统,有一个优先的时间方向,正如在我们对自然的感知中有一个优先的时间方向一样。这个共同的时间之矢正是我们与物理世界交流的必要条件,它亦是我们与我们的后来人交流的基础。

  因此,不稳定性不仅在经典力学而且在量干力学中都充当着核心角色,并且严格说来,它迫使我们扩展经典力学和量子力学的范围。这么做的时候,我们必须离开简单可积系统的领域。由于这一难题在过去几十年中争论得异常热烈,所以得出一个统一的量子理论的表述的可能性特别激动人心,但是扩展经典理论的必要性更显得出乎意料。我们认识到,这意味着与回溯到伽利略和牛顿所构想的西方科学基础的理性传统决裂。但最新的数学方法用于不稳定系统,与它导致的本书所述的扩展,并不是一种纯粹的巧合。它们使我们基于自然的概率描述来包含我们宇宙演化特性的描述。科恩(I.Bernard Cohen)在最近一篇文章里把概率革命说成是应用革命。他写道,即使1800-1930年间不显示概率领域的一场革命,但它们提供了概率化革命的证据,即随概率和统计学引入经历过革命性变革的领域,而带来惊人结果的一场真正革命的证据。这场概率化革命仍在进行中。

V

  现在我们要结束这一章。我们从伊壁鸠鲁和卢克莱修开始,他们所发明的倾向允许新奇性的出现。2500年后,我们终于可以给这个概念一个精确的物理学含义,它起源于被现代动力系统理论确认的不稳定性之中。如果世界由稳定动力学系统组成,它就会与我们所观察到的周围世界迥然不同。它将是一个静态的、可以预言的世界,但我们不能在此作出预言。在我们的世界里,我们在所有层次上都发现了涨落、分岔和不稳定性。导致确定性的稳定系统仅仅与理想化、与近似性相对应。奇怪的是,这又为庞加莱所预见到。在讨论热力学定律时,他写道:

  这些定律只有一个特性,那就是所有概率都存在一个共同属性。但在确定性假设方面仅有单一的概率,并且,这些定律不再有任何意义;另一方面,在非确定性假设方面那些定律也会有含义,即使它们在某种绝对意义上才被使用。它们作为一种施加于自由之上的限制出现。但这些话提醒我,我正在反对并正在离开数学和物理学领域。

  今天,我们不怕“非确定性假设”,它是不稳定性和混沌的现代理论的自然结果。一旦我们有了时间之矢,就会立刻明白自然的两个主要属性:自然的统一性和自然的多样性。统一性,因为宇宙的各个部分都共有时间之矢,你的未来即是我的未来,太阳的未来即是其他任何恒星的未来。多样性,像我写作的这间屋子,因为有空气,即或多或少达到热平衡的混合气体,并且处于分子无序状态之中;还因为有我妻子布置的美丽的鲜花,它们是远离平衡态的客体,是归功于不可逆的非平衡时间过程的高度组织化的客体。任何不考虑时间这种建设性作用的自然法则表述,都不可能令人满意。

 转自确定性的终结

其他文档:

一些关于计算机围棋的文章

解密:一张所有XP用户都感到吃惊的图片 

计算机围棋网络协议及c源代码

人工神经网络

一条永恒的金带--歌德尔定理

zt围棋是世界上最大的伪科学

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值